Pre-Breeding Concept and Role in Crop Improvement
Keywords:
pre-breeding, genetic base, novel techniquesAbstract
Genetic diversity is the foundation for the sustainable development of new varieties for present and future challenges which arises due to the various biotic and abiotic stresses. Pre-breeding offer unique opportunity to exploit genetic diversity by transferring desirable trait/genes from wild crop relatives into cultivated background using different novel techniques. Pre-breeding includes all activities of plant breeding research that precede the stages involved in cultivar development, testing and release. Current limited genetic base, expansion of genetically uniform modern variety, effect of climate change (better adapted gene require) and Evolving pest and pathogen populations (require new gene of resistance) are the reason to look for pre-breeding. The characterization of landraces/accession, creating new base population, creating polyploidy, developing new breeding techniques, wide cross and creating double haploids are among the pre-breeding activities that enables to change germplasm to immediate use in ordinary breeding program. Generally, though pre-breeding adopting face various challenges, there are also a number opportunities to exploit the pre-breeding advantage.
Downloads
References
Mohan, A., Kulwal, P., Singh, R., Kumar, V., Mir, R.R., Kumar, J., Prasad, M., Balyan, H.S. and Gupta, P.K., 2009. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica, 168(3), pp.319-329.
Book: Hallauer, A.R. and Miranda, J. B. 1981. Quantitative genetics in maize breeding Lowa State Univ. Press. Ames Lowa.
Lokanathan, T.R., Singh, P., Agarwal, D.K., Mohan, P., Singh, S.B., Gotmare, V. and Singh, V.V., 2003. Genetic enhancement in cotton. Technical Bulletin from CICR Report, (26).
Iqbal, M.J., Reddy, O.U.K., El-Zik, K.M. and Pepper, A.E., 2001. A genetic bottleneck in the’evolution under domestication’of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theoretical and applied genetics, 103(4), pp.547-554.
Sebolt, A.M., Shoemaker, R.C. and Diers, B.W., 2000. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Science, 40(5), pp.1438-1444.
Seetharam, A., 2007. Pre-breeding: An important step in the effective utilization of conserved germplasm.In National workshop on utilization of wild mulberry genetic resources 2nd & 3rd Nov (pp. 9-16).
Shimelis, H. and Laing, M., 2012. Timelines in conventional crop improvement: pre-breeding and breeding procedures. Australian Journal of Crop Science, 6(11), pp.1542-1549.
Kumar, V. and Shukla, Y.M., 2014. Pre-breeding: Its applications in crop improvement. Double Helix Res, 16, pp.199-202.
Singh, K., Kumar, S., Kumar, S.R., Singh, M. and Gupta, K., 2019. Plant genetic resources management and pre-breeding in genomics era. Indian J. Genet, 79(1 Suppl 117), p.130.
Book: Hallauer, A.R. and Miranda Filho, J.B., (1988). Quantitative genetics in maize breeding. Ames: Iowa University Press, 1988.
Haussmann, B.I.G., Parzies, H.K., Presterl, T., Susic, Z. and Miedaner, T., 2004. Plant genetic resources in crop improvement. Plant genetic resources, 2(1), pp.3-21.
Lonnquist, J.H., 1974. Consideration and experiences with recombinations of exotic and Corn Belt maize germplasm. In Proc. Annu. Corn Sorghum Res. Conf (Vol. 29, pp. 102-117).
Jain, S.K. and Omprakash. 2019. Pre-breeding: A Bridge between Genetic Resources and Crop Improvement. Int.J.Curr. Microbiol. App. Sci. 8(02): 1998-2007
Kumar V, and Y. M. Shukla. 2018. Pre-breeding: its applications in crop improvement, Double Helix Research, vol. 16, pp.199-202.
Arias, L.M., Latournerie, L., Montiel, S. and Sauri, E., 2007. Cambios recientes en la diversidad de maíces criollos de Yucatán, México. Ecosistemas y Recursos Agropecuarios, 23(1).
Martínez-Castillo J, Colunga-García MP, Zizumbo- Villarreal D, 2008. Genetic erosion and in situ conservation of Lima bean (Phaseolus lunatus L.) landraces in its Mesoamerican diversity center. Genet Resour Crop Evol 55: 1065–1077
Nelimor, C., Badu-Apraku, B., Nguetta, S.P., Tetteh, A.Y. and Garcia-Oliveira, A.L., 2020. Phenotypic characterization of maize landraces from Sahel and Coastal West Africa reveals marked diversity and potential for genetic improvement. Journal of Crop Improvement, 34(1), pp.122-138.
Liu, M., Li, Y., Ma, Y., Zhao, Q., Stiller, J., Feng, Q., Tian, Q., Liu, D., Han, B. and Liu, C., 2020. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant biotechnology journal, 18(2), pp.443-456.
Meseka, S., Fakorede, M., Ajala, S., Badu-Apraku, B. and Menkir, A., 2013. Introgression of alleles from maize landraces to improve drought tolerance in an adapted germplasm. Journal of Crop Improvement, 27(1), pp.96-112.
Pineda‐Hidalgo, K.V., Méndez‐Marroquín, K.P., Alvarez, E.V., Chávez‐Ontiveros, J., Sánchez‐Peña, P., Garzón‐Tiznado, J.A., Vega‐García, M.O. and López‐Valenzuela, J.A., 2013. Microsatellite‐based genetic diversity among accessions of maize landraces from Sinaloa in México. Hereditas, 150(4‐6), pp.53-59.
Gonzalez CME, Palacios RN, Espinoza BA, Bedoya SCA, 2013. Diversidad genetic en maíces natives mexicanos tropicales. Rev Fitotec Mex 36: 329- 338
Mengistu, D.K., Kiros, A.Y. and Pè, M.E., 2015. Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. The Crop Journal, 3(3), pp.190-199.
Sattler, F.T., Sanogo, M.D., Kassari, I.A., Angarawai, I.I., Gwadi, K.W., Dodo, H. and Haussmann, B.I.G., 2018. Characterization of West and Central African accessions from a pearl millet reference collection for agro-morphological traits and Striga resistance. Plant Genetic Resources, 16(3), pp.260-272.
Tiwari, D.N., Tripathi, S.R., Tripathi, M.P., Khatri, N. and Bastola, B.R., 2019. Genetic variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Advances in Agriculture, 2019.
Suarez-Gonzalez, A., Lexer, C. and Cronk, Q.C., 2018. Adaptive introgression: a plant perspective. Biology letters, 14(3), p.20170688.
Simmonds, N.W., 1993. Introgression and incorporation. Strategies for the use of crop genetic resources. Biological reviews, 68(4), pp.539-562.
Stam, P., 2003. Marker-assisted introgression: speed at any cost. In Eucarpia Leafy Vegetables/Th. JL van Hintum, A. Lebeda, D. Pink, JW Schut (pp. 117- 124).
Madlung, A., 2013. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity, 110(2), pp.99-104.
Book: Sleper DA, Poehlman JM. 2006. Breeding Field Crops. 5th Edition. Iowa State Press. Ames, USA.
Book: Acquaah, G., 2009. Principles of plant genetics and breeding. John Wiley & Sons.
Brown J, Caligari P., 2008. An introduction to plant breeding. Blackwell Publishing Ltd, Oxford, UK
Gu, Z., Steinmetz, L.M., Gu, X., Scharfe, C., Davis, R.W. and Li, W.H., 2003. Role of duplicate genes in genetic robustness against null mutations. Nature, 421(6918), pp.63-66.
Birchler, J.A., Yao, H., Chudalayandi, S., Vaiman, D. and Veitia, R.A., 2010. Heterosis. The Plant Cell, 22(7), pp.2105-2112.
Adams, K.L. and Wendel, J.F., 2005. Polyploidy and genome evolution in plants. Current opinion in plant biology, 8(2), pp.135-141.
Lynch, M. and Walsh, B., 2007. The origins of genome architecture (Vol. 98). Sunderland, MA: Sinauer Associates.
Lusser, M., Parisi, C., Plan, D. and RodríguezCerezo, E., 2012. Deployment of new biotechnologies in plant breeding. Nature biotechnology, 30(3), pp.231- 239. [37] Wędzony, M., Forster, B.P., Żur, I., Golemiec, E., Szechyńska-Hebda, M., Dubas, E. and Gotębiowska, G., 2009. Progress in doubled haploid technology in higher plants. Advances in haploid production in higher plants, pp.1-33.
Seguí-Simarro, J.M., 2015. Doubled haploidy in model and recalcitrant species. Frontiers in plant science, 6, p.1175. [39] Germana, M.A., 2011. Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture (PCTOC), 104(3), pp.283-300.
Dwivedi, S.L., Britt, A.B., Tripathi, L., Sharma, S., Upadhyaya, H.D. and Ortiz, R., 2015. Haploids: constraints and opportunities in plant breeding. Biotechnology advances, 33(6), pp.812-829.
Pink, D., Bailey, L., Mc Clement, S., Hand, P., Mathas, E., Buchanan-Wollaston, V., Astley, D., King, G. and Teakle, G., 2008. Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica, 164(2), pp.509-514.
Seitz, G., 2005. The use of doubled haploids in corn breeding. Proceedings of the forty first annual Illinois Corn Breeders’ School, pp.1-8.
Evenson, R.E. and Gollin, D., 2003. Assessing the impact of the Green Revolution, 1960 to 2000. science, 300 (5620), pp.758-762.
FAO, The State of the World’s Genetic Resources for Food and Agriculture, FAO, Rome, Italy, 1998.
Ceccarelli, S. and Grando, S., 2002. Plant breeding with farmers requires testing the assumptions of conventional plant breeding: Lessons from the ICARDA barley program. Farmers, scientists and plant breeding: Integrating knowledge and practice, 297332.
Iqbal, A. M., Lone, A. A., Wani, S. A., Wani, S. H. and Nehvi, F. A. (2017). Pre-breeding and Population Improvement. Inter Jour of Lif Scie DOI: 10.5958/j.2319-1198.2.3.023
Holland, J.B., 2004. Breeding: Incorporation of exotic germplasm. Encyclopedia of Plant and Crop Science. Marcel Dekker, Inc., New York, pp.222-224.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.