Detection, Screening and Molecular Characterization of Potential Actinobacterium from Lime-dwelling Powder for Extra Cellular Cellulase

Authors

  • Sudarshan A A-DBT Research Laboratory, Department of Microbiology, Gulbarga University, Kalaburgi-585106, INDIA
  • Renuka S A-DBT Research Laboratory, Department of Microbiology, Gulbarga University, Kalaburgi-585106, INDIA
  • Reshma S A-DBT Research Laboratory, Department of Microbiology, Gulbarga University, Kalaburgi-585106, INDIA
  • Shilanjali B A-DBT Research Laboratory, Department of Microbiology, Gulbarga University, Kalaburgi-585106, INDIA
  • Dayanand Agsar A-DBT Research Laboratory, Department of Microbiology, Gulbarga University, Kalaburgi-585106, INDIA

Keywords:

16S rRNA, Cellulase, Lime dwelling, Streptomyces

Abstract

Actinobacteria, conventionally known as actinomycetes are the most unique microorganisms revealing a link between bacteria and fungi. They are highly adaptable to extreme environmental condition and also exhibit a high diversity in metabolic activities. Biochemical, physiological and genetic features are mainly responsible for their higher adoptability to harsh conditions and extra cellular synthesis of wider secondary metabolites in general and enzymes and antibiotics in particular. The limestone quarry and lime powder dwellings are the harsh habitats prevailing in the northern region of Karnataka. These are the typical habitats left behind after the exploration of limestone and lime powder for highly commercial industrial activities such as production of cement and petroleum refining process respectively.

In the present investigation, efforts were made to detect cellulolytic actinobacteria from lime powder dwellings. Actinobacteria confirmed by the basic colony characters, microscopic features, biochemical and physiological properties were screened for the potential cellulolytic activity. In all 54 isolates of actinobacteria were detected and screened to obtain three best cellulolytic actinobacteria, namely DSA22, DSA38 and DSA39. The maximum zone of hydrolysis on carboxymethylcellulose medium was an important criterion to screen the best cellulolytic isolates of actinobacteria. Further, the three best isolates of cellulolytic actinobacteria were screened for maximum production of extra cellular cellulase. The isolate DSA22 with higher enzyme activity (12 IU) was subjected to molecular characterization. Based on 16s rRNA analysis (BioEra Laboratory, Pune, Maharashtra) an isolate DSA 22 was identified as Streptomyces enissocaesiles.  

Downloads

Download data is not yet available.

References

Amsaveni, R., Kumar, M. S., Vivekanandhan, G., Bhuvaneshwari, V., Kalaiselvi, M. (2015). Screening and isolation of pigment producing actinomycetes from soil samples Int. J. Biosci. Nanosci, 2(2): 24-28.

Bakare M.K., Adewale I.O., Ajayi A., Shonukan, OO (2005). Purufication and characterization of cellulase from the wild-type and two improved mutants of Pseudomonas fluorescens. Afri. J. Biotechnol., 4: 898–904.

Berdy J. (2012). Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 65(8): 385–395.

Buchanan R. E. and Gibbons N. E. (1974). Bergey’s Manual of Determinative Bacteriology, 8th Edn. The Williams & Wilkins Company, Baltimore., USA, (1974).

Castillo, U., Myers, S., Bwone, L., Strobel, G., Hess, W. M., Hanks, J. and Reay, D. (2006). Scanning electron microscopy of some endophytic streptomycetes in Snakevine-Kennedia niggricans. Scannings, 27:305–311.

Chun, J., Schumann, P. and Yi, S., 2007. Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara et al., 1985 as Actinotalea fermentans gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57:121-156.

Cochrane, V.W., 1961. Physiology of Actinomycetes. Annu. Rev. Microbiol., 15:1-26 conditions on cellulase production by Streptomyces sp. (Strain J2). Jordan Journal of Biological Sciences, 1:141-146.

Eida, M. F., Nagaoka, T., Wasaki, J. and Kouno, K. (2012). Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes Environ, 27: 226–233.

Eida, M. F., Nagaoka, T., Wasaki, J. and Kouno, K. (2012). Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes Environ, 27: 226–233.

Feina Li, Shaowei Liu, Qinpei Lu, Hongyun, Z., Ilya, A. O., Dmitry A. L., Petr V. S., Olga A. D., Shuangshuang Liu, Jingjing Ye, Dalin Huang, and Chenghang Sun. (2019). Studies on Antibacterial Activity and Diversity of Cultivable Actinobacteria Isolated from Mangrove Soil in Futian and Maoweihai of China Evidence-Based Complementary and Alternative Medicine, 2019: 1-11.

Flaig, W. and Kutzner, H.J., 1960. Beitrag zur Systematic der Gattung Streptomyces Waksman Henrici. Arch. Microbial., 35: 105.

Game, B. C., C. D. Deokar and A.C. Jadhav (2018). Characterization of Cellulolytic Microorganisms Associated with Naturally Decomposing Waste Material. Int .J. Curr. Microbiol. App. Sci, 7(4): 1710-1719.

Ganesan, P., Rajendran, Host A. D., Appadurai D. R., Munusamy R. G., Michael G. P., Savarimuthu I. and Naif A. A. (2017). Isolation and molecular characterization of actinomycetes withantimicrobial and mosquito larvicidal properties, Beni-Suef University Journal of Basic and Applied Sciences 2016 (6): 9-7.

Ghose, T.K., 1987. Measurement of cellulase activity, 1987. Pure and Applied Chemistry, 59: 257–268.

Goodfellow, M. and O’Donnell, A.G., 1989. Search and discovery of industrially-significant actinomycetes: Proceeding of the 44th Symposium on Society for General Microbiology, (SCGM ’89), Cambridge University Press, Cambridge, Pp: 343–383.

Gottlieb, D., 1961. An evolution of criteria and procedures used in the description and characterization of Streptomyces, A co-operative study. Appl. Microbiol., 9: 55-60.

Hankin, L. and Anagnostakis, S.L., 1976. Solid media containing carboxy methyl cellulose to detect Cx cellulase activity of microorganisms. Journal of General Microbiology, 98:109-115.

Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., and Y., Igarashi. (2002). Construction of a Stable Microbial Community with High Cellulose-degradation Ability. Applied microbiology and biotechnology, 59: 529-34.

Higerdal, B. G. R., J. D. Ferchak, and E. K. Pye (1978). Cellulolytic enzyme system of Thermoactinomyces sp. grown on microcrystalline cellulose Appl. Environ. Microbiol., 36: 606-612.

Ishaque, M., and D. Kluepfel (1980). Cellulase complex of a mesophilic Streptomyces strain Can. J. Microbiol. 26:183-189.

Izquierdo, A., Casas, C. and Herrero, E. (2010). Selenite-induced cell death in Saccharomyces cerevisiae: protective role of glutaredoxins Microbiology, 156 (9):2608-20

Jackson, M.L., 1973. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd.

Jang, H. D. and K. S. Chang (2005). Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-l fermenter Biotechnology Letters, 27(4): 239–242.

John, B., 1986. Regulation of Cellulolytic Activity in the White-Rot Fungus Ischnoderma redinosum. Mycologia, 78(1):52-55.

Jones, B. E., A. H. Kleij Wilhelmus, P. Van Solingen and W. Weyler (2004). Cellulase producing actinomycetes, cellulase produced there from and method of producing same. EP 1408108 B1,

Ki-hyeong R. (2003). Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J Microbiol Biotechnol 13:984–988.

Kuster, E. and Williams, S.T., 1964. Selection of media for isolation of Streptomycetes. Nature, 202:928-929.

Ludwig, W., Euzéby, J., Schumann, P., Buss, H. J., Trujillo, M. E., Kämpfer, P. and Whiteman, W. B. (2012). Road map of the phylum Actinobacteria, p 1–28.

Malviya, N., Yadav, A. K., Yandigeri, M. S. and Arora, D. K. (2010). Diversity of culturable Streptomycetes from wheat cropping system of fertile regions of Indo-Gangetic Plains, India. World J. Microbiol. Biotechnol.

Meena, B., L.A. Rajan, N.V. Vinithkumar and R. Kirubagaran (2013). Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts BMC Microbiol., 13 (145): 2–17.

Miller, G.L., 1959. Use of Dinitro salicylic acid reagent for determination of reducing sugar. Analytical Chemistry., 31:426–428.

Mohanta, Y. K. (2014). Isolation of cellulose degrading actinomycetes and evaluation of their cellulolytic potential Bioengineering and Bioscience, 2:1-5.

Mujoko,T., Sastrahidayat, I. R., Hadiastono, T. and Djauhari S. (2014). Antagonistic effect of Streptomyces spp. on spore germination and mycelial growth of Fusarium oxysporum f. sp. lycopersici Int. J. Biosci., 5(9): 414-422.

Nonomura H. (1974). Key for classification and identification of 458 species of the Streptomycetes included in ISP J. Ferment. Technol., 52: 78-92.

Nurkanto A (2009). Cellulolitic activities of actinomycetes isolated from soil rhizosphere of Waigeo, Raja Ampat, West Papua J. Tanah. Trop. 14: 239-244.

Painter, B. G. and Bradley, S.G. (1965). Observation on the structure of Streptomyces venezuelae. Bact. Proc. 5.

Prakash S., Ramasubburayan R., Iyapparaj P., Kumar C., Mary C.J, Palavesam A. and Immanuel G. (2013). Screening and partial purification of antifungal metabolite from Streptomyces rochei MSA14: an isolate from marine mining soil of Southwest coast of India Ind. J. Geo-Marine Sci., 42(7): 888-897.

Pridham T. G., Anderson C., Foley L. A., Lindenfelser C. W., Hesseltine C. W. and Benedict R. G. (1957). A selection of media for maintenance and taxonomic study of streptomycetes. Antibiotics Annual 1956/57, 947-953.

Pridham, T.G., Anderson, P., Foley, C., Lindenfelser, L.A., Hesseltine, C.W. and Benedict, R. G. (1956). A selection of media for maintenance and taxonomic study of Streptomyces. Antibiot Annu. 1956:947–953.

Rajagopal Gobalakrishnana and Kannan Sivakumar (2017). Systematic characterization of potential cellulolytic marine actinobacteria Actinoalloteichus sp. MHA15. Biotechnology Reports, 13 (2017): 30–36.

Rajivgandhi G, Ramachandran G, Maruthupandy M, Senthil R, Vaseeharan B. and Manoharan N. (2018). Molecular characterization and antibacterial investigation of marine endophytic actinomycetes Nocardiopsis sp. GRG 2 (KT 235641) compound against isolated ESBL producing bacteria, Microbial Pathogenesis doi: https://doi.org/10.1016/j.micpath.2018.10.014.

Reyad, A. M. (2013). Diverse of enzymatically active actinomycetes associated with mangrove rhizosphere in Jazan Coast Ann. Biol. Res., 4 (4):100–108.

S. Priyanka, M. Jayashree, R. Shivani, S. Anwesha, K. V. Bhaskara Rao and Arnold E. I. (2019). Characterisation and identification of antibacterial compound from marine actinobacteria: In vitro and in silico analysis Journal of Infection and Public Health, 12(2019): 83-89.

Sabouraud K., 1892, Ann. Dermatol. Syphil, 3:1061.

Sagardoy, M.A. and C.M. Salerno (1984). Studies on heterotrophic bacteria in some Argentine soils, Anal. Edaf. Agrobiol. 42, 2069.

Saini, A., Aggarwal, N. K., Sharam, A. and Yadav, A. (2015). Actinomycetes: a source of lignocellulolytic enzymes Enzyme Res., 2015: 1-15.

Schafer J., Jackel U. and Kampfer P. (2010). Development of a new PCR primer system for selective amplification of Actinobacteria. FEMS Microbiol. Lett. 311(2):103–112.

Sirisha, B., R. Haritha, Y.S.Y.V. Jaganmohan, K. Sivakumar and T. Ramana (2013). Bioactive compounds from marine actinomycetes isolated from the sediments of Bay of Bengal, Int. J. Pharm. Chem. Biol. Sci., 3 (2): 257–264.

Skinner, F.A., 1951. A method for distinguishing between viable spores and mycelia fragments of actinobacteria in soils. J. Gen. Microbiol., 159-166.

Skujin- sˇ J., Puk- ite A., McLaren, A. D. (2002). Application of scanning and transmitting electron micrography in the differentiation of soil streptomycetes. Soil Biol Biochem 3:181–184.

Su, T. M., and J. Paulaviclus (1975). Enzymatic saccharification of cellulose by thermophilic Actinomyces Appl. Polym. Symp. 28: 221-236.

Thayer, D. W., Lowther, S. V and Phillips J. G. (1984). Cellulolytic activities of strains of the genus Cellulomonas Int. J. Syst. Bacteriol. 34:432–438.

Viikari L., Alapuranen M., Puranen T., Vehmaanpera J., Siika-Aho, M. (2007) Thermo stable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol., 108:121–145.

Walkley, A.J. and Black, I.A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37, 29-38.

Williams, S. T. and Davies F. L. (1967). Use of a scanning electron microscope for the examination of actinomycetes J. Gen. Microbiol. 48:171–177.

Zhang, F., J. J. Chen and W. Z. (2011). Ren Cloning, expression and characterization of an alkaline thermostable GH9 endoglucanase from Thermobifida halotolerans YIM, 90462 T. Bioresource Technology, 102 (21): 10143–10146.

Downloads

Published

2021-01-30

How to Cite

Sudarshan A, Renuka S, Reshma S, Shilanjali B, & Dayanand Agsar. (2021). Detection, Screening and Molecular Characterization of Potential Actinobacterium from Lime-dwelling Powder for Extra Cellular Cellulase. International Journal for Research in Applied Sciences and Biotechnology, 8(1), 94–106. Retrieved from https://ijrasb.com/index.php/ijrasb/article/view/97