Article Review: Immunological Markers Related with Thyroidisum
DOI:
https://doi.org/10.31033/ijrasb.9.2.4Keywords:
Thyroid, Immunological, Asymptomatic, Stimulating HormoneAbstract
Immune markers are enzymes which influence human capacity to fight off dangerous agents like germs as well as various external invaders. This paper aims to determine the elements that have a role in the pathogenesis of Thyroid disease, an immunological disorder caused by a combination of hereditary predisposition and external conditions. Celiac disease (CD), also known as gluten sensitive enteropathy, is rather prevalent in western countries, with just a frequency of roughly 1%. Most people that are asymptomatic or have minor signs may now be diagnosed with CD because to the new advent of precise or precise serological tests. With this using vitro humanoid creature, investigate overall effects of hypothyroidism function in circulatory biomarkers for fibroblast immunological reaction. This pathophysiology of autoimmune thyroid disorders (AITD) is inadequately known, as well as the relationship among immunological characteristics with AITD-related genetic variations is still unknown. Individuals' thyroid functioning progressed from asymptomatic or moderate hyperthyroidism at the first appointment to typical circulation amounts of unbound thyroid hormone or thyroid - stimulating hormone just at subsequent, eventually leading to hypothyroidism. Researchers recently explored that anti-thyroid peroxidase antibody (TPOAb) concentrations were connected with global reduction in IgG central fucosylation and antennary fucosylation in periphery plasma mononuclear cells in AITD. Fucose reduction is known to enhance targeted antigen-expressing cell killing by potentiating robust antibiotic Killer cellular proliferation. It might lead to autoantibody-mediated immune cell mobilization or assault of self-antigen-expressing normal tissues in autoimmunity.
Downloads
References
Allam, R., Darisipudi, M. N., Tschopp, J., and Handers, H. J. (2013). Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur. J. Immunol. 43, 3336–3342. doi: 10.1002/eji.201243224
Amores-Iniesta, J., Barberà-Cremades, M., Martiníz, C. M., Pons, J. A., Revilla-Nuin, B., Martínez- Alarcón, L., et al. (2017). Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Rep. 21, 3414–3426. doi: 10.1016/j.celrep.2017.11.079
Anastasiadou, E., Faggioni, A., Trivedi, P., and Slack, F. J. (2018a). The nefarious nexus of noncoding RNAs in cancer. Int. J. Mol. Sci. 19:2072. doi: 10.3390/ijms19072072
Anastasiadou, E., Seto, A., Beatty, X., Hermreck, M., Gilles, M.-E., Stroopinsky, D., et al. (2020). Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth in vitro and in vivo. Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-3139 [Epub ahead of print].
Babu, K. R., and Tay, Y. (2019). The yin-yang regulation of reactive oxygen species and microRNAs in cancer. Int. J. Mol. Sci. 20:5335. doi: 10.3390/ijms20215335
Boelen, A., Kwakkel, J., and Fliers, E. (2011). Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr. Rev. 32, 670–693. doi: 10.1210/er.2011-2017
Boro, M., and Balaji, K. N. (2017). CXCL1 and CXCL2 regulate NLRP3 inflammasome activation via G-protein-coupled receptor CXCR2. J. Immunol. 199, 1660–1671. doi: 10.4049/jimmunol.1700129
Brent, G. A. (2012). Mechanisms of thyroid hormone action. J. Clin. Invest. 122, 3035–3043. doi: 10.1172/JCI60047
Chen, Y., Yuan, M., Xia, M., Wang, L., Zhang, Y., and Li, P. L. (2016). Instant membrane resealing in nlrp3 inflammasome activation of endothelial cells. Front. Biosci. 21:635–650. doi: 10.2741/4411
Cheng, S. Y., Leonard, J. L., and Davis, P. J. (2010). Molecular aspects of thyroid hormone actions. Endocr. Rev. 31, 139–170. doi: 10.1210/er.2009-2007
Davis, P. J., Ashur-Fabian, O., Incerpi, S., and Mousa, S. A. (2019). Editorial: non genomic actions of thyroid hormones in Cancer. Front. Endocrinol. (Lausanne) 10:847. doi: 10.3389/fendo.2019.00847
de Castro, A. L., Fernandes, R. O., Ortiz, V. D., Campos, C., Bonetto, J. H. P., Fernandes, T., et al. (2018). Thyroid hormones decrease the proinflammatory TLR4/NF-κβ pathway and improve functional parameters of the left ventricle of infarcted rats. Mol. Cell. Endocrinol. 461, 132–142. doi: 10.1016/j.mce.2017.09.003
De Vito, P., Incerpi, S., Pedersen, J. Z., Luly, P., Davis, F. B., and Davis, P. J. (2011). Thyroid hormones as modulators of immune activities at the cellular level. Thyroid 21, 879–890. doi: 10.1089/thy.2010.0429
de Vries, E. M., Fliers, E., and Boelen, A. (2015). The molecular basis of the non-thyroidal illness syndrome. J. Endocrinol. 225, R67–R81. doi: 10.1530/JOE-15-0133
Dong, H., Paquette, M., Williams, A., Zoeller, R. T., Wade, M., and Yauk, C. (2010). Thyroid hormone may regulate mRNA abundance in liver by acting on microRNAs. PLoS One 5:e12136. doi: 10.1371/journal.pone.0012136
Ely, K. A., Bischoff, L. A., and Weiss, V. L. (2018). Wnt signaling in thyroid homeostasis and carcinogenesis. Genes (Basel) 9:204. doi: 10.3390/genes9040204
Flamant, F., Cheng, S. Y., Hollenberg, A. N., Moeller, L. C., Samurat, J., Wondisford, F. E., et al. (2017). Thyroid hormone signaling pathways: time for a more precise nomenclature. Endocrinology 158, 2052–2057. doi: 10.1210/en.2017-2250
Forini, F., Nicolini, G., Kusmic, C., D’Aurizio, R., Rizzo, M., Baumgart, M., et al. (2018). Integrative analysis of differentially expressed genes and miRNAs predicts complex T3-mediated protective circuits in a rat model of cardiac ischemia reperfusion. Sci. Rep. 8:13870. doi: 10.1038/s41598-018-32237-32230
Forini, F., Nicolini, G., Kusmic, C., and Iervasi, G. (2019). Protective effects of euthyroidism restoration on mitochondria function and quality control in cardiac pathophysiology. Int. J. Mol. Sci. 20:3377. doi: 10.3390/ijms20143377
Franchi, L., Eigenbrod, T., Muñoz-Panillo, R., Ozkurede, U., Kim, Y. G., and Arindam, C. (2014). Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J. Immunol. 193, 4214–4222. doi: 10.4049/jimmunol.1400582
Furuya, F., Ishii, T., Tamura, S., Takahashi, K., Kobayashi, H., Ichijo, M., et al. (2017). The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities. Sci. Rep. 7:43960. doi: 10.1038/srep43960
Gagnon, A., Langille, M. L., Chaker, S., Antunes, T. T., Durand, J., and Sorisky, A. (2014). TSH signaling pathways that regulate MCP-1 in human differentiated adipocytes. Metabolism 63, 812–821. doi: 10.1016/j.metabol.2014.02.015
Gnocchi, D., Leoni, S., Incerpi, S., and Bruscalupi, G. (2012). 3,5,3’-Triiodothyronine (T3) stimulates cell proliferation through the activation of the PI3K/Akt pathway and reactive oxygen species (ROS) production in chick embryo hepatocytes. Steroids 77, 589–595. doi: 10.1016/j.steroids.2012.01.022
Greaney, A. J., Leppla, S. H., and Moayeri, M. (2015). Bacterial exotoxins and the inflammasome. Front. Immunol. 6:570. doi: 10.3389/fimmu.2015.00570
Gupta, N., Sahu, A., Prabhakar, A., Chatterjee, T., Tyagi, T., and Kumari, B. (2017). Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc. Natl. Acad. Sci. U S A. 114, 4763–4768. doi: 10.1073/pnas.1620458114
Haque, S., Lan, X., Wen, H., Lederman, R., Chawla, A., Attia, M., et al. (2016). HIV promotes NLRP3 inflammasome complex activation in murine HIV-associated nephropathy. Am. J. Pathol. 186, 347–358. doi: 10.1016/j.ajpath.2015.10.002
He, Y., Hara, H., and Núñez, G. (2016a). Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021. doi: 10.1016/j.tibs.2016.09.002
He, Y., Zeng, M. Y., Yang, D., Motro, B., and Núñez, G. (2016b). NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357. doi: 10.1038/nature16959
Hsieh, M.-T., Wang, L.-M., Changou, C. A., Chin, Y.-T., Yang, Y.-C. S. H., Lai, H.-Y., et al. (2017). Crosstalk between integrin αvβ3 and ERα contributes to thyroid hormone induced proliferation of ovarian cancer cells. Oncotarget 8, 24237–24249. doi: 10.18632/oncotarget.10757
Hua, K. F., Chou, J. C., Ka, S. M., Tasi, Y. L., Chen, A., Wu, S. H., et al. (2015). Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production. J. Cell. Physiol. 230, 863–874. doi: 10.1002/jcp.24815
Incerpi, S., Davis, P. J., Pedersen, J. Z., and Lanni, A. (2016). “Nongenomic actions of thyroid hormones,” in Principles of Endocrinology and Hormone in Review Action, eds A. Belfiore, and D. LeRoith, (Cham: Springer International Publishing), 1–26. doi: 10.1007/978-3-319-44675-2_32
Jacobs, A., Derese, I., Vander Perre, S., van Puffelen, E., Verstraete, S., Pauwels, L., et al. (2019). Non-thyroidal illness syndrome in critically ill children: prognostic value and impact of nutritional management. Thyroid 29, 480–492. doi: 10.1089/thy.2018.0420
Janssen, R., Zuidwijk, M. J., Kuster, D. W., Muller, A., and Simonides, W. S. (2014). Thyroid hormone-regulated cardiac microRNAs are predicted to suppress pathological hypertrophic signaling. Front. Endocrinol. (Lausanne) 5:171. doi: 10.3389/fendo.2014.00171
Ketsamathi, C., Jongjaroenprasert, W., Chailurkit, L. O., Udomsubpayakul, U., and Kiertiburanakul, S. (2006). Prevalence of thyroid dysfunction in Thai HIV-infected patients. Curr. HIV Res. 4, 463–467. doi: 10.2174/157016206778560036
Khoo, B., Tan, T., Clarke, S. A., Mills, E. G., Patel, B., Modi, M., et al. (2020). Thyroid function before, during and after COVID-19. J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgaa830 Online ahead of print.
Kimura-Yoshida, C., Mochida, K., Nakaya, M. A., Mizutani, T., and Matsuo, I. (2018). Cytoplasmic localization of GRHL3 upon epidermal differentiation triggers cell shape change for epithelial morphogenesis. Nat. Commun. 9:4059. doi: 10.1038/s41467-018-06171-6178
Kwakkel, J., Surovtseva, O. V., de Vries, E. M., Stap, J., Fliers, E., and Boelen, A. (2014). A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology 155, 2725–2734. doi: 10.1210/en.2013-2066
Lanni, A., Moreno, M., and Goglia, F. (2016). Mitochondrial actions of thyroid hormone. Compr. Physiol. 6, 1591–1607. doi: 10.1002/cphy.c150019
Lee, S., and Farwell, A. P. (2016). Euthyroid sick syndrome. Compr. Physiol. 6, 1071–1080. doi: 10.1002/cphy.c150017
Liao, C. H., Yeh, C. T., Huang, Y. H., Wu, S. M., Chi, H. C., Tsai, M. M., et al. (2012). Dickkopf 4 positively regulated by the thyroid hormone receptor suppresses cell invasion in human hepatoma cells. Hepatology 55, 910–920. doi: 10.1002/hep.24740
Lin, H. Y., Su, Y. F., Hsieh, M. T., Lin, S., Meng, R., London, D., et al. (2013a). Nuclear monomeric integrin αv in cancer cells is a coactivator regulated by thyroid hormone. FASEB J. 27, 3209–3216. doi: 10.1096/fj.12-227132
Lin, Y. H., Liao, C. J., Huang, Y. H., Wu, M. H., Chi, H. C., Wu, S. M., et al. (2013b). Thyroid hormone receptor represses miR-17 expression to enhance tumor metastasis in human hepatoma cells. Oncogene 32, 4509–4518. doi: 10.1038/onc.2013.309
Liu, J., Mao, C., Dong, L., Kang, P., Ding, C., Zheng, T., et al. (2019). Excessive iodine promotes pyroptosis of thyroid follicular epithelial cells in Hashimoto’s Thyroiditis through the ROS-NFκB-NLRP3 pathway. Front. Endocrinol. (Lausanne) 20:778. doi: 10.3389/fendo.2019.00778
Magupalli, M. G., Negro, R., Tian, Y., Hauenstein, A. V., Di Caprio, G., Skillern, W., et al. (2020). HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 369:eaas8995. doi: 10.1126/science
Mancini, A., Di Segni, C., Raimondo, S., Olivieri, G., Silvestrini, A., Meucci, E., et al. (2016). Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm. 2016:6757154. doi: 10.1155/2016/6757154
Mangan, M. S. J., Olhava, E. J., Roush, W. R., Seidel, H. M., Glick, J. D., and Latz, E. (2018). Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588–606. doi: 10.1038/nrd.2018.97
Marazuela, M., Giustina, A., and Puig-Domingo, M. (2020). Endocrine and metabolic aspects of the COVID-19 pandemic. Rev. Endocr. Metab. Disord 9, 1–13. doi: 10.1007/s11154-020-09569-9562
McDermott, M. T. (2019*). “Non-thyroidal illness syndrome (Euthyroid sick syndrome),” in Management of Patients With Pseudo-endocrine Disorders ed M. T. McDermott, (Cham: Springer), 331–339.
Moossavi, M., Parsamanesh, N., Bahrami, A., Atkin, S. L., and Sahebkar, A. (2018). Role of the NLRP3 inflammasome in cancer. Mol. Cancer 17, 158. doi: 10.1186/s12943-018-0900-903
Neppl, R. L., and Wang, D. Z. (2014). The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes Dis. 1, 18–39. doi: 10.1016/j.gendis.2014.06.003
Newton, K., and Dixit, V. M. (2012). Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 4:a006049. doi: 10.1101/cshperspect.a006049
Pal, R., and Banerjee, M. (2020). COVID-19 and the endocrine system: exploring the unexplored. J. Endocrinol. Invest. 43, 1027–1031. doi: 10.1007/s40618-020-01276-8
Parsa, A. A., and Bhangoo, A. (2013). HIV and thyroid dysfunction. Rev. Endocr. Metab. Disord 14, 127–131. doi: 10.1007/s11154-013-9248-9246
Pushpakumar, S., Ren, L., Kundu, S., Gamon, A., Tyagi, S. C., and Sen, U. (2017). Toll-like receptor 4 deficiency reduces oxidative stress and macrophage mediated inflammation in hypertensive kidney. Sci. Rep. 7:6349. doi: 10.1038/s41598-017-06484-6486
Schroder, K., and Tschopp, J. (2010). The Inflammasomes. Cell 140, 821–832. doi: 10.1016/j.cell.2010.01.040
Seok, H. Y., Chen, J., Kataoka, M., Huang, Z. P., Ding, J., Yan, J., et al. (2014). Loss of microRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res. 114, 1585–1595. doi: 10.1161/CIRCRESAHA.114.303784
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665. doi: 10.1038/nature15514
Silverman, E. K., Schmidt, H. H. H. W., Anastasiadou, E., Altucci, L., Angelini, M., Lina Badimon, L., et al. (2020). Molecular networks in network medicine: development and applications. Wiley Interdiscip Rev. Syst. Biol. Med. 12, e1489. doi: 10.1002/wsbm.1489
Singh, B. K., Sinha, R. A., Ohba, K., and Yen, P. M. (2017). Role of thyroid hormone in hepatic gene regulation, chromatin remodeling, and autophagy. Mol. Cell. Endocrinol. 458, 160–168. doi: 10.1016/j.mce.2017.02.018
Singh, B. K., Sinha, R. A., and Yen, P. M. (2018). Novel transcriptional mechanisms for regulating metabolism by thyroid hormone. Int. J. Mol. Sci. 19:3284. doi: 10.3390/ijms19103284
Su, M., Chen, Z., Wang, C., Song, L., Zou, Y., Zhang, L., et al. (2016). Cardiac-Specific overexpression of miR-222 induces heart failure and inhibits autophagy in mice. Cell Physiol. Biochem. 39, 1503–1511. doi: 10.1159/000447853
Todaro, M., Iovino, F., Eterno, V., Cammareri, P., Gambara, G., Espina, V., et al. (2010). Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res. 70, 8874–8885. doi: 10.1158/0008-5472.CAN-10-1994
Tomer, Y. (2014). Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. Annu. Rev. Pathol. 9, 147–156. doi: 10.1146/annurev-pathol-012513-104713
Van der Spek, A. H., Surovtseva, O. V., Jim, K. K., van Oudenaren, A., Brouwer, M. C., Vandenbroucke-Grauls, C. M. J. E., et al. (2018). Regulation of intracellular triiodothyronine is essential for optimal macrophage function. Endocrinology 159, 2241–2252. doi: 10.1210/en.2018-2053
van Rooij, E., Quiat, D., Johnson, B. A., Sutherland, L. B., Qi, X., Richardson, J. A., et al. (2009). A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 17, 662–673. doi: 10.1016/j.devcel.2009.10.013
Vargas, R., and Videla, L. A. (2017). Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: role of AMP-activated protein kinase. Immunol. Lett. 184, 92–97. doi: 10.1016/j.imlet.2017.01.007
Vernon, P. J., and Tang, D. (2013). Eat-me: autophagy, phagocytosis, and reactive oxygen species signaling. Antioxid. Redox. Signal. 18, 677–691. doi: 10.1089/ars.2012.4810
Vidart, J., Wajner, S. M., Leite, R. S., Manica, A., Schaan, B. D., Larsen, P. R., et al. (2014). N-acetylcysteine administration prevents nonthyroidal illness syndrome in patients with acute myocardial infarction: a randomized clinical trial. J. Clin. Endocrinol. Metab. 99, 4537–4545. doi: 10.1210/jc.2014-2192
von Hafe, M., Neves, J. S., Vale, C., Borges-Canha, M., and Leite-Moreira, A. (2019). The impact of thyroid hormone dysfunction on ischemic heart disease. Endocr Connect 8, R76–R90. doi: 10.1530/EC-19-0096
Wai Lui, D. T., Lee, C. H., Chow, W. S., Hong Lee, A. C., Tam, A. R., Yi Fong, C. H., et al. (2020). Thyroid dysfunction in relation to immune profile, disease status and outcome in 191 patients with COVID-19. J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgaa813 Online ahead of print.
Wajner, S. M., Goemann, I. M., Bueno, A. L., Larsen, P. R., and Maia, A. L. (2011). IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J. Clin. Invest. 121, 1834–1845. doi: 10.1172/JCI44678
Wang, J. X., Jiao, J. Q., Li, Q., Long, B., Wang, K., Liu, J. P., et al. (2011). miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 17, 71–78. doi: 10.1038/nm.2282
Wang, L., Negro, R., and Wu, H. (2020). TRPM2, linking oxidative stress and Ca2+ permeation to NLRP3 inflammasome activation. Curr. Opin. Immunol. 62, 131–135. doi: 10.1016/j.coi.2020.01.005
Wang, Y., Men, M., Yang, W., Zheng, H., and Xue, S. (2015). MiR-31 downregulation protects against cardiac ischemia/reperfusion injury by targeting Protein Kinase C Epsilon (PKCε) directly. Cell Physiol. Biochem. 36, 179–190. doi: 10.1159/000374062
Wang, Z., Zhang, S., Xiao, Y., Zhang, W., Wu, S., Qin, T., et al. (2020). NLRP3 inflammasome and inflammatory diseases. Oxid. Med. Cell Longev. 17, 4063562. doi: 10.1155/2020/4063562
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.