Effect of Ce4+ substitution on the properties of Ni-Cr-Fe ferrite nanoparticles synthesized via sol-gel route
Keywords:
Sol-gel method, lattice parameter, crystallite size, saturation magnetizationAbstract
Cerium doped Ni-Cr-Fe spinel ferrite nanoparticles were synthesized by using sol-gel auto combustion method. XRD patterns of the samples sintered at 600 0C revels the cubic spinel structure with co-existence of CeO2 and a - Fe2O3 phases. Average value of lattice constant varies from 8.244 Å to 8.354 Å while as the crystallite size increases with the addition of Ce4+ ions in nickel ferrites. SEM micrographs show the well defined and mostly spherical shaped grains on the surface of the samples. The infrared spectra of all the samples were recorded at room temperature in the range of 300 cm-1 to 800 cm-1. As a common feature of spinel ferrites, infrared spectra of the present samples also show two main absorption bands. Saturation magnetization (MS) and remnant magnetization (Mr) decreases as the cerium percentage in Ni-Cr ferrite increases.
Downloads
References
H. Gul, E. Pervaiz, (2012). Comparative study of NiFe2-xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques, Materials research bulletin, 47, 1353-1361.
A. V. Raut, R. S. Barkule, D. R. Shengule, K. M. Jadhav, (2014). Synthesis, structuralinvestigationandmagneticpropertiesofZn2þ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique, J. Magn. Magn. Mater. 358, 87-92
S. Chakrabarty, M. Pal, A. Dutta, (2015). Structural, optical and electrical properties of chemically derived nickel substituted zinc ferrite nanocrystals, Materials chem. and phy. 153, 221-228
A. M. M. Farea, S. Kumar, K. M. Batoo, (2008). Mössbauer studies of Co0.5CdxFe2.5−xO4 (0.0⩽x⩽0.5) ferrite, Physica B: Condensed matter, 403 (19-20), 3604-3607
I. H. Gul, A. Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, (2007). Structural, magnetic and electrical properties of Co1-xZnxFe2O4 synthesized by co-precipitation method, J. Magn. Magn. Mater. 311, 494–499.
H. W. Wang, S. C. Kung, (2004). Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method, J. Magn. Magn. Mater., 270(1-2), 230-236
A. K. Singh, A. Verma, O. P. Thakur, C. Prakash, T. C. Goel, R. G. Mendiratta, (2003). Electrical and magnetic properties of Mn–Ni–Zn ferrites processed by citrate precursor method, Mater. Lett., 57(5-6), 1040-1044
A. M. Wahba, M. B. Mohamed, (2014). Magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite, Ceram. Inter., 40(04), 6127-6135
X. Duan, D. Yuan, Z. Sun, C. Luan, D. Pan, D. Xu, M. Lv, (2005). Preparation of Co2+ doped ZnAl2O4 nanoparticles by citrate sol–gel method, J. Alloys Compd., 386(1-2), 311-314
Baykal, N. Kasapoğlu, Y. Köseoğlu, A. C. Başaran, H. Kavas, M. S. Toprak, (2008). Microwave-induced combustion synthesis and characterization of NixCo1-xFe2O4 nanocrystals (x¼ 0.0, 0.4,0.6,0.8,1.0), Cent. Eur.J. Chem., 6, 125-130
M. H. Yousefi, S. Manouchehri, A. Arab, M. Mozaffari, Gh. R. Amiri, J. Amighian, (2010). Preparation of cobalt–zinc ferrite (Co0.8Zn0.2Fe2O4) nano- powder via combustion method and investigation of its magnetic properties, Mater. Res. Bull., 45(12), 1792-1795
G. R. Holcomb, D. E. Alman, (2006). The effect of manganese addition on the reactive evaporation in Ni-Cr alloys, Scripta Materialia, 54(10) 1821-1825
S. E. Shirsath, S. S. Jadhav, B. G. Toksha, S. M. Patange, K. M. Jadhav, (2011). Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4, J. Appl. Phys. 110(01) 013914-18
S. T. Assar, H. F. Abosheiasha, (2012). Structure and magnetic properties of Co-Ni-Li ferrite synthesized by citrate precursor method, J. Magn. Magn. Mater. 324(22), 3846-3852
G. Mustafa, M. U. Islam, W. Zhang, Y. Jamil, M. A. Iqbal, M. Hussain, M. Ahmed, (2015). Temperature dependent structural and magnetic properties of Cerium substituted Co–Cr ferrite prepared by auto-combustion method, J. Magn. Magn. Mater., 378(15), 409-416.
G. Mustafa, M. U. Islam, W. Zhang, Y. Jamil, A. W. Anwar, M. Husaain, M. Ahmed, (2015). Reinvestigations on the effect of heat treatment on the properties of Ni-CrFe-O ferrite nanoparticles synthesized via sol-gel route, J. Alloys. Com., 618, 428-436
E. Pervaiz, I. H. Gul, (2013). Low temperature synthesis and enhanced electrical properties of substitution of Al3+ and Cr3+ in Co-Ni nano ferrites, J. Magn. Magn. Mater. 343, 194-202.
Vivek Choudhari, R. H. Kadam, M. L. Mane, S. E. Shirsath, A. B. Kadam, D. R. Mane, (2014). Effect of La3+ impurity on magnetic and electrical properties of Co-Cu-Cr-Fe nanoparticles, J. Nanosci. Nanotch., 15(06), 4268-75
R. D. Waldron, (1955) Infrared spectra of ferrites, Phys. Rev., 99(06), 1727-1735
W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, Y. Du, (1997). Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique, J. Magn. Magn. Mater., 168(1-2), 196-202
E. C. Stoner, E. P. Wohlfarth, (1991). A mechanism of magnetic hysteresis in heterogeneous alloys, IEEE Trans. Magn.27(04), 3475-3518
S. H. Liou, S. Hunag, E. Kilmerk, R. D. Kriby, (1999). Enhancement of coercivity in nanometer – size CoPt crystallites, J. Appl. Phys., 85(08), 4334-4336
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 International Journal for Research in Applied Sciences and Biotechnology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.