A Review on Artificial Intelligence and Machine Learning to Improve Cancer Management and Drug Discovery

Authors

  • Roshan Kumar Department of Pharmacology, Dev Bhoomi Institute of Pharmacy and research, Dehradun, Uttrakhand, INDIA.
  • Purabi Saha Department of Pharmacy, Uttranchal Institute of Pharmaceutical Science, Uttaranchal University, Dehradun, Uttrakhand, INDIA.

DOI:

https://doi.org/10.31033/ijrasb.9.3.26

Keywords:

AI, Cancer, drug discovery, computational method, therapeutic target medications

Abstract

Typical pharmacological effect screening techniques use diluted natural ingredients that do not segregate active components. For the last two decades, contemporary medicine has identified and isolated potent active isomeric compounds. Multi-target therapies were a novel notion in the mid-2000s, but they will be one of the more critical advancements in developing drugs in 2021. Target-based drug development for effective natural anticancer therapeutics based on well-defined fragments is being researched instead of naturally occurring combinations. This paper highlights computer-aided/fragment-based structure deconstruction and an inter method for natural anticancer medicines. The use of computer-aided drug development has increased (CADD). This study focused on antitumor agents and computer-aided drug development.

Downloads

Download data is not yet available.

References

Kumar, R., Saha, P., Kumar, Y., Sahana, S., Dubey, A., & Prakash, O. (2020). A Review on Diabetes Mellitus: Type1 & Type2. World Journal of Pharmacy and Pharmaceutical Sciences, 9(10), 838-850.

Saha, P., Nyarko, R. O., Lokare, P., Kahwa, I., Boateng, P. O., & Asum, C. (2022). Effect of Covid-19 in Management of Lung Cancer Disease: A Review. Asian Journal of Pharmaceutical Research and Development, 10(3), 58-64.

Daharia, A., Jaiswal, V. K., Royal, K. P., Sharma, H., Joginath, A. K., Kumar, R., & Saha, P. (2022). A Comparative review on ginger and garlic with their pharmacological Action. Asian Journal of Pharmaceutical Research and Development, 10(3), 65-69.

Singh, M. K., Kumar, A., Kumar, R., Kumar, P. S., Selvakumar, P., & Chourasia, A. (2022). Effects of Repeated Deep Frying on Refractive Index and Peroxide Value of Selected Vegetable Oils. International Journal for Research in Applied Sciences and Biotechnology, 9(3), 28-31

Roshan, K. (2020). Priya damwani, Shivam kumar, Adarsh suman, Suthar Usha. An overview on health benefits and risk factor associated with coffee. International Journal Research and Analytical Review, 7(2), 237-249.

Kumar, R., Saha, P., Lokare, P., Datta, K., Selvakumar, P., & Chourasia, A. (2022). A Systemic Review of Ocimum sanctum (Tulsi): Morphological Characteristics, Phytoconstituents and Therapeutic Applications. International Journal for Research in Applied Sciences and Biotechnology, 9(2), 221-226.

Nyarko, R. O., Kumar, R., Sharma, S., Chourasia, A., Roy, A., & Saha, P. (2022). ANTIBACTERIAL ACTIVITY OF HERBAL PLANT-TINOSPORA CORDIFOLIA AND CATHARNTHUS ROSEUS.

Sahana, S. (2020). Purabi saha, Roshan kumar, Pradipta das, Indranil Chatterjee, Prasit Roy, Sk Abdur Rahamat. A Review of the 2019 Corona virus (COVID-19) World Journal of Pharmacy and Pharmaceutical science, 9(9), 2367-2381

Bind, A., Das, S., Singh, V. D., Kumar, R., Chourasia, A., & Saha, P. Natural Bioactives For The Potential Management Of Gastric Ulceration. Turkish Journal of Physiotherapy and Rehabilitation, 32(3).

Dubey, A., Yadav, P., Verma, P., & Kumar, R. (2022). Investigation of Proapoptotic Potential of Ipomoea carnea Leaf Extract on Breast Cancer Cell Line. Journal of Drug Delivery and Therapeutics, 12(1), 51-55.

Saha, P., Kumar, R., Nyarko, R. O., Kahwa, I., & Owusu, P. (2021). HERBAL SECONDARY METABOLITE FOR GASTRO-PROTECTIVE ULCER ACTIVITY WITH API STRUCTURES.

Sahana, S. (2020). Roshan kumar, Sourav nag, Reshmi paul, Nilayan guha, Indranil Chatterjee. A Review on Alzheimer disease and future prospects. World Journal of Pharmacy and Pharmaceutical science, 9(9), 1276-1285.

Sahana, S., Kumar, R., Nag, S., Paul, R., Chatterjee, I., & Guha, N. (2020). A REVIEW ON ALZHEIMER DISEASE AND FUTURE PROSPECTS.

Nyarko, R. O., Prakash, A., Kumar, N., Saha, P., & Kumar, R. (2021). Tuberculosis a globalized disease. Asian Journal of Pharmaceutical Research and Development, 9(1), 198-201.

Kumar, R., & Dubey, A. PHYTOCHEMICAL INVESTICATION AND HEPTOPROTECTIVE EVALUTION ACACIA RUBICA EXTRACT ISONIZED AND PARACETAMOL INDUSED ANIMAL TOXICITY. Turkish Journal of Physiotherapy and Rehabilitation, 32(3).

Raj, A., Tyagi, S., Kumar, R., Dubey, A., & Hourasia, A. C. (2021). Effect of isoproterenol and thyroxine in herbal drug used as cardiac hypertrophy. Journal of Cardiovascular Disease Research, 204-217.

PURABISAHA, R. K., RAWAT, S. S. N., & PRAKASH, A. (2021). A REVIEW ON NOVEL DRUG DELIVERY SYSTEM.

Nyarko, R. O., Saha, P., Kumar, R., Kahwa, I., Boateng, E. A., Boateng, P. O., ... & Bertram, A. (2021). Role of Cytokines and Vaccines in Break through COVID 19 Infections. Journal of Pharmaceutical Research International, 33, 2544-2549.

Kumar, R., Saha, P., Pathak, P., Mukherjee, R., Kumar, A., & Arya, R. K. EVOLUTION OF TOLBUTAMIDE IN THE TREATMENT OF DIABETES MELLITUS. Jour. of Med. P’ceutical & Alli. Sci, 9.

KUMAR, R., SAHA, P., SARKAR, S., RAWAT, N., & PRAKASH, A. (2021). A REVIEW ON NOVEL DRUG DELIVERY SYSTEM. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), 8(1), 183-199.

KUMAR, A. (2019). The Scenario of Pharmaceuticals and Development of Microwave Assisted Extraction Techniques.

SHAFQAT ZAIDI, R. K. MEHRA, Dr. SACHIN TYAGI, ROSHAN KUMAR ANUBHAV DUBEY.(2021). Effect of Kalahari Cactus Extract on Appetitte, Body Weight And Lipid Profile In Cafeteria Diet Induced Obesity In Experimental Animal. Annals of the Romanian Society for Cell Biology, 25(6), 13976-13987.

Markham, A. (2017). Copanlisib: first global approval. Drugs, 77(18), 2057-2062.

Mathi, P., Prasad, M. V. V. V., Botlagunta, M., Ravi, M., & Ramachandran, D. (2018). De novo design of selective Sortase-A inhibitors: Synthesis, structural and in vitro characterization. Chemical Data Collections, 15, 126-133.

Salmaso,V., Moro, S. (2018). Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process:AnOverview. Front.Pharmacol. 9.doi:10.3389/fph ar.2018.00923

Drews, J. (2000). Drug discovery: a historical perspective. science, 287(5460), 1960-1964.

Eskiler, G. G. (2019). Talazoparib to treat BRCA-positive breast cancer. Drugs of today (Barcelona, Spain: 1998), 55(7), 459-467.

Klebe G., Abraham U., Mietzner T. (1994). Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 37, 4130–4146. 10.1021/jm00050a010

Kortagere, S., & Ekins, S. (2010). Troubleshooting computational methods in drug discovery. Journal of pharmacological and toxicological methods, 61(2), 67-75.

Lennerz, J. K., Kwak, E. L., Ackerman, A., Michael, M., Fox, S. B., Bergethon, K., ... & Iafrate, A. J. (2011). MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. Journal of clinical oncology, 29(36), 4803.

Markham, A. (2019). Alpelisib: first global approval. Drugs, 79(11), 1249-1253.

Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., ... & Kelley, S. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature reviews Drug discovery, 5(10), 835-844.

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer; 2020 (https://gco.iarc.fr/today, accessed February 2021).

GBD results tool. Seattle (WA): Institute for Health Metrics, University of Washington; 2020 (http://ghdx.healthdata.org/gbd-results-tool, accessed February 2021).

de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180-e190.

Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey. Geneva: World Health Organization; 2020.

Wild CP, Weiderpass E, Stewart BW, editors. World Cancer Report: Cancer Research for Cancer Prevention. Lyon: International Agency for Research on Cancer; 2020.

Global Initiative for Cancer Registry Development. Lyon: International Agency for Research on Cancer; 2020 (https://gicr.iarc.fr/about-the-gicr/the-value-of-cancer-data/, accessed February 2021)

NIH (2021). Cancer. Available at: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/cancer

Setlow R. B. (2001). Human Cancer: Etiologic Agents/dose Responses/DNA Repair/cellular and Animal Models. Mutat. Research/Fundamental Mol. Mech. Mutagenesis 477, 1–6. 10.1016/s0027-5107(01)00090-2

Who (2021b). WHO FactSheets: Cancer. 3 March 2021. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer

Wogan, G. N., Hecht, S. S., Felton, J. S., Conney, A. H., & Loeb, L. A. (2004, December). Environmental and chemical carcinogenesis. In Seminars in cancer biology (Vol. 14, No. 6, pp. 473-486).

Shoichet, B.K. Virtual screening of chemical libraries. Nature 2004, 432, 862–865

Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919.

Rosales, A.R.; Wahlers, J.; Limé, E.; Meadows, R.E.; Leslie, K.W.; Savin, R.; Bell, F.; Hansen, E.; Helquist, P.; Munday, R.H. Rapid virtual screening of enantioselective catalysts using CatVS. Nat. Catal. 2019, 2, 41.

Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018, 4, eaap7885.

Ballester, P.J. Machine Learning for Molecular Modelling in Drug Design. Biomolecules 2019, 9, 216.

Rydzewski, J.; Nowak, W. Machine learning based dimensionality reduction facilitates ligand diffusion paths assessment: A case of cytochrome P450cam. J. Chem. Theory Comput. 2016, 12, 2110–2120.

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., ... & Tsirigos, A. (2018). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature medicine, 24(10), 1559-1567.

Campanella, G., Hanna, M. G., Geneslaw, L., Miraflor, A., Silva, V. W. K., Busam, K. J., ... & Fuchs, T. J. (2019). Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature medicine, 25(8), 1301-1309.

Hollon, T. C. et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat. Med. 26, 52–58 (2020).

Tschandl, P., Rinner, C., Apalla, Z., Argenziano, G., Codella, N., Halpern, A., ... & Kittler, H. (2020). Human–computer collaboration for skin cancer recognition. Nature Medicine, 26(8), 1229-1234.

Ebrahimkhani, S., Vafaee, F., Hallal, S., Wei, H., Lee, M. Y. T., Young, P. E., ... & Kaufman, K. L. (2018). Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ precision oncology, 2(1), 1-9.

Bomane, A., Gonçalves, A., & Ballester, P. J. (2019). Paclitaxel response can be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data. Frontiers in genetics, 10, 1041.

Norgeot, B., Quer, G., Beaulieu-Jones, B. K., Torkamani, A., Dias, R., Gianfrancesco, M., ... & Butte, A. J. (2020). Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nature medicine, 26(9), 1320-1324.

Napoli, M., & Flores, E. R. (2020). Loss of p53 protein strikes a nerve to aid tumour growth.

Mulder, W. J., Ochando, J., Joosten, L. A., Fayad, Z. A., & Netea, M. G. (2019). Therapeutic targeting of trained immunity. Nature Reviews Drug Discovery, 18(7), 553-566.

Patel, S. S., Acharya, A., Ray, R. S., Agrawal, R., Raghuwanshi, R., & Jain, P. (2020). Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Critical reviews in food science and nutrition, 60(6), 887-939.

Vesteghem C., Brøndum R. F., Sønderkær M., Sommer M., Schmitz A., Bødker J. S., et al. (2020). Implementing the FAIR Data Principles in Precision Oncology: Review of Supporting Initiatives. Brief Bioinform 21 (3), 936–945. 10.1093/bib/bbz044

Zong N., Wen A., Stone D. J., Sharma D. K., Wang C., Yu Y., et al. (2020). Developing an FHIR-Based Computational Pipeline for Automatic Population of Case Report Forms for Colorectal Cancer Clinical Trials Using Electronic Health Records. JCO Clin. Cancer Inform. (4), 201–2099.10.1200/CCI.19.00116

Zong N., Wen A., Stone D. J., Sharma D. K., Wang C., Yu Y., et al. (2020). Developing an FHIR-Based Computational Pipeline for Automatic Population of Case Report Forms for Colorectal Cancer Clinical Trials Using Electronic Health Records. JCO Clin. Cancer Inform. (4), 201–2099. 10.1200/CCI.19.00116

Wise J., de Barron A. G., Splendiani A., Balali-Mood B., Vasant D., Little E., et al. (2019). Implementation and Relevance of FAIR Data Principles in Biopharmaceutical R&D. Drug Discov. Today 24, 933–938. 10.1016/j.drudis.2019.01.008

Wilkinson M. D., Dumontier M., Aalbersberg I. J., Appleton G., Axton M., Baak A., et al. (2016). The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 3, 160018. 10.1038/sdata.2016.18

Vesteghem C., Brøndum R. F., Sønderkær M., Sommer M., Schmitz A., Bødker J. S., et al. (2020). Implementing the FAIR Data Principles in Precision Oncology: Review of Supporting Initiatives. Brief Bioinform 21 (3), 936–945. 10.1093/bib/bbz044

Zong N., Wen A., Stone D. J., Sharma D. K., Wang C., Yu Y., et al. (2020). Developing an FHIR-Based Computational Pipeline for Automatic Population of Case Report Forms for Clinical Trials Using Electronic Health Records. JCO Clin. Cancer Inform. (4), 201–2099. 10.1200/CCI.19.00116

WHO. Global strategy on digital health 2020-2025 World Health Organization;. Available from: https://cdn.who.int/media/docs/defaultsource/documents/gs4dhdaa2a9f352b0445bafbc79ca799dce4d.pdf?sfvrsn=f112ede5_75

Konstantina Kourou, Themis P. Exarchos, Konstantinos P. Exarchos, Michalis V. Karamouzis, Dimitrios I. Fotiadis,Machine learning applications in cancer prognosis and prediction, Computational and Structural Biotechnology Journal,Volume 13,2015,Pages 8-17,ISSN 2001-0370, https://doi.org/10.1016/j.csbj.2014.11.005

Douzas, G., Bacao, F., & Last, F. (2018). Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Information Sciences, 465, 1-20.

Gupta S, Gupta MK (2021) Prostate cancer prognosis using multi-layer perceptron and class balancing techniques. In: 2021 thirteenth international conference on contemporary computing (IC3-2021) (IC3 '21), NY, USA. https://doi.org/10.1145/3474124.3474125.

Gupta S, Gupta MK. An approach based on neural learning for diagnosis of prostate cancer. JNR. 2020;21(3):110–8.https://doi.org/10.1111/coin.12452

Downloads

Published

2022-06-25

How to Cite

Roshan Kumar, & Purabi Saha. (2022). A Review on Artificial Intelligence and Machine Learning to Improve Cancer Management and Drug Discovery. International Journal for Research in Applied Sciences and Biotechnology, 9(3), 149–156. https://doi.org/10.31033/ijrasb.9.3.26

Issue

Section

Articles