Memory Enhancing Activity of Ginger (Zingiber officinale) , Its Treatments in Dementia and Alzheimers Disease
DOI:
https://doi.org/10.31033/ijrasb.9.3.14Keywords:
Zingiber officinale, Alzheimer’s disease, Degenerative disease, Dementia, NeuroprotectiveAbstract
As people live longer, they are becoming more susceptible to age-related ailments. Dementia patients throughout the world are crying out for better treatments, but the ones currently on the market do not meet those demands. Natural compounds, which have been used in traditional medicine due to their good effects and high tolerance, have recently grabbed the attention of the scientific community. Ginger (Zingiber officinale) has been shown to have anti-and anti-anti-vascular Alzheimer's dementia properties, two of the most common and devastating dementias. On Alzheimer's disease and vascular dementia models and in some human trials, ginger compounds were found to be therapeutic. These studies all point to a role for Ginger in both the treatment and prevention of this illness. Most people with Alzheimer's (AD) notice a decline in their cognitive abilities, although it is a neurological condition that affects the elderly in particular.Amyloid-beta buildup and tau hyperphosphorylation, as well as a lack of neurotransmitter balance, as well as cell death and inflammation, all contribute to the development of this disease. Finding new Alzheimer's disease medicines that can also alleviate side effects and pharmacokinetic difficulties is a desirable goal. Phytochemicals, which have been widely used by humans, can be used to fight a wide variety of ailments. Zingiber officinale, Gingeroids, Shogaoids, and Bornols were examined for memory problems. – Following the initial screening process, clinical trials are conducted in vitro. Intervening mechanisms like oxidative stress and apoptosis are among the most frequently addressed ones. A new study has linked Alzheimer's disease pathogenesis to signalling pathways. In vivo studies and clinical trials aid in the clarification of test findings and results scores in the area of cognitive functioning. Many conventional aspects of ginger intake in AD also appear in the current review. Ginger and its constituents' pharmacological and therapeutic properties will need to be studied in more depth in order to help treat and prevent memory problems.
Downloads
References
M. Prince, R. Bryce, E. Albanese, A. Wimo, W. Ribeiro, C.P. Ferri The global prevalence of dementia: a systematic review and metaanalysis Alzheimer’s Dementia, 9 (1) (2013), pp. 63-75
S. Chrubasik, M.H. Pittler, B.D. RoufogalisZingiberisrhizoma: a comprehensive review on the ginger effect and efficacy profiles Phytomedicine, 12 (9) (2005), pp. 684-701,
M. Ramsden, Z. Henderson, H.A. Pearson Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid [beta] protein (1-40) is dependent on solubility status Brain Res., 956 (2) (2002), pp. 254-261
R.J. O’Brien, P.C. Wong Amyloid precursor protein processing and Alzheimer’s diseaseAnnu. Rev. Neurosci., 34 (2011), pp. 185-204,
Metaxas, S.J. KempfNeurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics Neural Regen. Res., 11 (10) (2016), pp. 1579-1581,
K. Iqbal, F. Liu, C.X. Gong, I. Grundke-Iqbal Tau in Alzheimer disease and related tauopathiesCurr. Alzheimer Res., 7 (8) (2010), pp. 656-664,
E.D. Roberson, K. Scearce-Levie, J.J. Palop, F. Yan, I.H. Cheng, T. Wu, et al.Reducing endogenous tau ameliorates amyloid {beta}-Induced deficits in an Alzheimer’s disease mouse model Sci. STKE, 316 (5825) (2007), p. 750
D. Butterfield, S. Griffin, G. Munch, G. PasinettiAmyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists J. Alzheimers Dis., 4 (3) (2002), pp. 193-202
S. Samarghandian, M. Azimi-Nezhad, T. FarkhondehImmunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats Indian Heart J., 69 (2) (2017), pp. 151-159
M. Talebi, M. Talebi, S. SamarghandianAssociation of crocus sativus with cognitive dysfunctions and Alzheimer’s disease: a systematic reviewBiointerface Res. Appl. Chem., 11 (1) (2021)
De Lima, R.M.T.; Dos Reis, A.C.; de Menezes, A.P.M.; Santos, J.V.O.; Filho, J.; Ferreira, J.R.O.; de Alencar, M.; da Mata, A.; Khan, I.N.; Islam, A.; et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother. Res. 2018, 32, 1885–1907.
Saha, P., Kumar, R., Nyarko, R. O., Kahwa, I., & Owusu, P. (2021). HERBAL SECONDARY METABOLITE FOR GASTRO-PROTECTIVE ULCER ACTIVITY WITH API STRUCTURES.
Nyarko, R. O., Kumar, R., Sharma, S., Chourasia, A., Roy, A., & Saha, P. (2022). ANTIBACTERIAL ACTIVITY OF HERBAL PLANT-TINOSPORA CORDIFOLIA AND CATHARNTHUS ROSEUS.
Umama, Y., Venkatajah, G., Shourabh, R., Kumar, R., Verma, A., Kumar, A., & Gayoor, M. K. (2019). Topic-The scenario of pharmaceuticals and development of microwave as; sisted extraction technique. World J Pharm Pharm Sci, 8(7), 1260-1271.
Singh, M. K., Kumar, A., Kumar, R., Kumar, P. S., Selvakumar, P., & Chourasia, A. (2022). Effects of Repeated Deep Frying on Refractive Index and Peroxide Value of Selected Vegetable Oils. International Journal for Research in Applied Sciences and Biotechnology, 9(3), 28-31.
Nyarko, R. O., Saha, P., Kumar, R., Kahwa, I., Boateng, E. A., Boateng, P. O., Christian, A. and Bertram, A. (2021) “Role of Cytokines and Vaccines in Break through COVID 19 Infections”, Journal of Pharmaceutical Research International, 33(60B), pp. 2544-2549. doi: 10.9734/jpri/2021/v33i60B34912.
Jung, M.Y.; Lee, M.K.; Park, H.J.; Oh, E.B.; Shin, J.Y.; Park, J.S.; Jung, S.Y.; Oh, J.H.; Choi, D.S. Heat-induced conversion of gingerols to shogaols in ginger as affected by heat type (dry or moist heat), sample type (fresh or dried), temperature and time. Food Sci. Biotechnol. 2018, 27, 687–693.
Kumar N.V., Murthy P.S., Manjunatha J.R., Bettadaiah B.K. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chem. 2014;159:451–457.
Citronberg J., Bostick R., Ahearn T., Turgeon D.K., Ruffin M.T., Djuric Z., Sen A., Brenner D.E., Zick S.M. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: Results from a pilot, randomized, and controlled trial. Cancer Prev. Res. 2013;6:271–281.
Ho S., Chang K., Lin C. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem. 2013;141:3183–3191.
Akinyemi A.J., Thome G.R., Morsch V.M., Stefanello N., Goularte J.F., Bello-Klein A., Oboh G., ChitolinaSchetinger M.R. Effect of dietary supplementation of ginger and turmeric rhizomes on angiotensin-1 converting enzyme (ACE) and arginase activities in L-NAME induced hypertensive rats. J. Funct. Foods. 2015;17:792–801.
Suk S., Kwon G.T., Lee E., Jang W.J., Yang H., Kim J.H., Thimmegowda N.R., Chung M., Kwon J.Y., Yang S., et al. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice. Mol. Nutr. Food Res. 2017;61:1700139.
Wei C., Tsai Y., Korinek M., Hung P., El-Shazly M., Cheng Y., Wu Y., Hsieh T., Chang F. 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int. J. Mol. Sci. 2017;18:168.
Walstab J., Krueger D., Stark T., Hofmann T., Demir I.E., Ceyhan G.O., Feistel B., Schemann M., Niesler B. Ginger and its pungent constituents non-competitively inhibit activation of human recombinant and native 5-HT3 receptors of enteric neurons. Neurogastroent. Motil. 2013;25:439–447.
Townsend E.A., Siviski M.E., Zhang Y., Xu C., Hoonjan B., Emala C.W. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am. J. Resp. Cell Mol. 2013;48:157–163.
Prasad S., Tyagi A.K. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroent. Res. Pract. 2015;2015:142979.
Raj, A., Tyagi, S., Kumar, R., Dubey, A., & Hourasia, A. C. (2021). Effect of isoproterenol and thyroxine in herbal drug used as cardiac hypertrophy. Journal of Cardiovascular Disease Research, 204-217.
Schadich E., Hlavac J., Volna T., Varanasi L., Hajduch M., Dzubak P. Effects of ginger phenylpropanoids and quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT keratinocytes. Biomed Res. Int. 2016;2016:2173275.
Yeh H., Chuang C., Chen H., Wan C., Chen T., Lin L. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT-Food Sci. Technol. 2014;55:329–334.
Poprac P., Jomova K., Simunkova M., Kollar V., Rhodes C.J., Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017;38:592–607.
Li S., Li S., Gan R., Song F., Kuang L., Li H. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crop. Prod. 2013;51:289–298.
Nyarko, R. O., Prakash, A., Kumar, N., Saha, P., & Kumar, R. (2021). Tuberculosis a globalized disease. Asian Journal of Pharmaceutical Research and Development, 9(1), 198-201.
Bind, A., Das, S., Singh, V. D., Kumar, R., Chourasia, A., & Saha, P. NATURAL BIOACTIVES FOR THE POTENTIAL MANAGEMENT OF GASTRIC ULCERATION. Turkish Journal of Physiotherapy and Rehabilitation, 32, 3.
Guo Y., Deng G., Xu X., Wu S., Li S., Xia E., Li F., Chen F., Ling W., Li H. Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi. Food Funct. 2012;3:1195–1205.
PURABISAHA, R. K., RAWAT, S. S. N., & PRAKASH, A. (2021). A REVIEW ON NOVEL DRUG DELIVERY SYSTEM.
Dubey, A., Yadav, P., Verma, P., & Kumar, R. (2022). Investigation of Proapoptotic Potential of Ipomoea carnea Leaf Extract on Breast Cancer Cell Line. Journal of Drug Delivery and Therapeutics, 12(1), 51-55
Cardoso A. M., Abdalla F. H., Bagatini M. D., et al. Swimming training prevents alterations in acetylcholinesterase and butyrylcholinesterase activities in hypertensive rats. American Journal of Hypertension. 2013;27(4):522–529. doi: 10.1093/ajh/hpt030.
Bind, A., Das, S., Singh, V. D., Kumar, R., Chourasia, A., &Saha, P. NATURAL BIOACTIVES FOR THE POTENTIAL MANAGEMENT OF GASTRIC ULCERATION. Turkish Journal of Physiotherapy and Rehabilitation, 32, 3.
Sahana, S. (2020). Purabi saha, Roshan kumar, Pradipta das, Indranil Chatterjee, Prasit Roy, Sk Abdur Rahamat. A Review of the 2019 Corona virus (COVID-19) World Journal of Pharmacy and Pharmaceutical science, 9(9), 2367-2381.
Mann A. Biopotency role of culinary spices and herbs and their chemical constituents in health and commonly used spices in Nigerian dishes and snacks. African Journal of Food Science. 2011;5(3):111–124.
Arablou T., Aryaeian N., Valizadeh M., Sharifi F., Hosseini A., Djalali M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. International Journal of Food Sciences and Nutrition. 2014;65(4):515–520. doi: 10.3109/09637486.2014.880671.
Ansari M., Porouhan P., Mohammadianpanah M., et al. Efficacy of ginger in control of chemotherapy induced nausea and vomiting in breast cancer patients receiving doxorubicin-based chemotherapy. Asian Pacific Journal of Cancer Prevention. 2016;17(8):3877–3880.
Maghbooli M., Golipour F., Esfandabadi A. M., Yousefi M. Comparison between the efficacy of ginger and sumatriptan in the ablative treatment of the common migraine. Phytotherapy Research. 2014;28(3):412–415. doi: 10.1002/ptr.4996.
Tanaka K., Arita M., Sakurai H., Ono N., Tezuka Y. Analysis of chemical properties of edible and medicinal ginger by metabolomics approach. BioMed Research International. 2015;2015:p. 7. doi: 10.1155/2015/671058.671058
Park M., Bae J., Lee D.-S. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytotherapy Research. 2008;22(11):1446–1449. doi: 10.1002/ptr.2473.
Roshan Kumar, Purabi Saha, Priyatosh Pathak, Ramayani Mukherjee4 , Abhishek Kumar6 , Rakesh Kumar Arya. EVOLUTION OF TOLBUTAMIDE IN THE TREATMENT OF DIABETES MELLITUS. Jour. of Med. P’ceutical & Alli. Sci. V 9-I 6, 956. November-December 2020, P-2605-2609.
Chakotiya A. S., Tanwar A., Narula A., Sharma R. K. Zingiber officinale: its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microbial Pathogenesis. 2017;107:254–260. doi: 10.1016/j.micpath.2017.03.029.
Kumar, R., Saha, P., Kumar, Y., Sahana, S., Dubey, A., & Prakash, O. (2020). A REVIEW ON DIABETES MELLITUS: TYPE1 & TYPE2.
Kumar, R., Saha, P., Lokare, P., Datta, K., Selvakumar, P., & Chourasia, A. (2022). A Systemic Review of Ocimum sanctum (Tulsi): Morphological Characteristics, Phytoconstituents and Therapeutic Applications. International Journal for Research in Applied Sciences and Biotechnology, 9(2), 221-226.
KUMAR, A. (2019). The Scenario of Pharmaceuticals and Development of Microwave Assisted Extraction Techniques.
Roshan, K. (2020). Priya damwani, Shivamkumar, Adarsh suman, Suthar Usha. An overview on health benefits and risk factor associated with coffee. International Journal Research and Analytical Review, 7(2), 237-249.
Karuppiah P., Rajaram S. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pacific Journal of Tropical Biomedicine. 2012;2(8):597–601. doi: 10.1016/s2221-1691(12)60104-x.
Pashaei-Asl R., Pashaei-Asl F., Gharabaghi P. M., et al. The inhibitory effect of ginger extract on ovarian cancer cell line; application of systems biology. Advanced Pharmaceutical Bulletin. 2017;7(2):241–249. doi: 10.15171/apb.2017.029.
Kumar, R., Saha, P., Kumar, Y., Sahana, S., Dubey, A., & Prakash, O. (2020). A REVIEW ON DIABETES MELLITUS: TYPE1 & TYPE2.
Prevention Research. 2014;7(6):627–638. doi: 10.1158/1940-6207.capr-13-0420.
Ezzat S. M., Ezzat M. I., Okba M. M., Menze E. T., Abdel-Naim A. B. The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. Journal of Ethnopharmacology. 2018;214:113–123. doi: 10.1016/j.jep.2017.12.019.
Al-Amin Z. M., Thomson M., Al-Qattan K. K., Peltonen-Shalaby R., Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. British Journal of Nutrition. 2006;96(4):660–666. doi: 10.1079/bjn20061849.
Liju V. B., Jeena K., Kuttan R. Gastroprotective activity of essential oils from turmeric and ginger. Journal of Basic and Clinical Physiology and Pharmacology. 2015;26(1):95–103. doi: 10.1515/jbcpp-2013-0165.
Si W., Chen Y. P., Zhang J., Chen Z.-Y., Chung H. Y. Antioxidant activities of ginger extract and its constituents toward lipids. Food Chemistry. 2018;239:1117–1125. doi: 10.1016/j.foodchem.2017.07.055.
Kumar, R., & Dubey, A. PHYTOCHEMICAL INVESTICATION AND HEPTOPROTECTIVE EVALUTION ACACIA RUBICA EXTRACT ISONIZED AND PARACETAMOL INDUSED ANIMAL TOXICITY. Turkish Journal of Physiotherapy and Rehabilitation, 32, 3.
Hussein U. K., Hassan N., Elhalwagy M., et al. Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules. 2017;22(11) doi: 10.3390/molecules22111928.
Sebiomo A., Awofodu A. D., Awosanya A. O., Awotona F. E., Ajayi A. J. Comparative studies of antibacterial effect of some antibiotics and ginger (Zingiber officinale) on two pathogenic bacteria. Journal of Microbiology and Antimicrobials. 2011;3(1):18–22.
Kumar, S., Kumar, A., Kumar, R., Kumar, V., Kumar, N., & Tyagi, A. (2022). Phytochemical, Pharmacognostical and Pharmacological Activities of Carica papaya. International Journal for Research in Applied Sciences and Biotechnology, 9(2), 310-315.
Maizura M., Aminah A., Wan Aida W. M. Total phenolic content and antioxidant activity of kesum(Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. International Food Research Journal. 2011;18(2):529–534.
Nyarko, R. O., Prakash, A., Kumar, N., Saha, P., & Kumar, R. (2021). Tuberculosis a globalized disease. Asian Journal of Pharmaceutical Research and Development, 9(1), 198-201.
Awuchi, C. G., Amagwula, I. O., Priya, P., Kumar, R., Yezdani, U., & Khan, M. G. (2020). Aflatoxins in foods and feeds: A review on health implications, detection, and control. Bull. Environ. Pharmacol. Life Sci, 9, 149-155.
Kumar, R., & Dubey, A. PHYTOCHEMICAL INVESTICATION AND HEPTOPROTECTIVE EVALUTION ACACIA RUBICA EXTRACT ISONIZED AND PARACETAMOL INDUSED ANIMAL TOXICITY. Turkish Journal of Physiotherapy and Rehabilitation, 32, 3.
Sahana, S., Kumar, R., Nag, S., Paul, R., Chatterjee, I., & Guha, N. (2020). A REVIEW ON ALZHEIMER DISEASE AND FUTURE PROSPECTS
El-Akabawy G., El-Kholy W. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats. Annals of Anatomy-Anatomischer Anzeiger. 2014;196(2-3):119–128. doi: 10.1016/j.aanat.2014.01.003.
Shanmugam K., Mallikarjuna K., Kesireddy N., Reddy K. S. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food and Chemical Toxicology. 2011;49(4):893–897. doi: 10.1016/j.fct.2010.12.013.
Kim S. O., Chun K.-S., Kundu J. K., Surh Y.-J. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-κB and p38 MAPK in mouse skin. Biofactors. 2004;21(1–4):27–31. doi: 10.1002/biof.552210107.
Miyoshi N., Nakamura Y., Ueda Y., et al. Dietary ginger constituents, galanals A and B, are potent apoptosis inducers in Human T lymphoma Jurkat cells. Cancer Letters. 2003;199(2):113–119. doi: 10.1016/s0304-3835(03)00381-1.
Yasmin Anum M., Shahriza Z. A., Looi M. L., et al. Ginger extract (Zingiber officinale Roscoe) triggers apoptosis in hepatocarcinogenesis induced rats. Medicine & Health. 2008;3(2):263–274.
Kumar, R., Saha, P., Lokare, P., Datta, K., Selvakumar, P., & Chourasia, A. (2022). A Systemic Review of Ocimum sanctum (Tulsi): Morphological Characteristics, Phytoconstituents and Therapeutic Applications. International Journal for Research in Applied Sciences and Biotechnology, 9(2), 221-226.
Romero A., Forero M., Sequeda-Castañeda L. G., et al. Effect of ginger extract on membrane potential changes and AKT activation on a peroxide-induced oxidative stress cell model. Journal of King Saud University—Science. 2018;30(2):263–269. doi: 10.1016/j.jksus.2017.09.015.
Akinyemi A. J., Ademiluyi A. O., Oboh G. Aqueous extracts of two varieties of ginger (Zingiber officinale) inhibit angiotensin I-converting enzyme, iron(II), and sodium nitroprusside-induced lipid peroxidation in the rat heart in vitro. Journal of Medicinal Food. 2013;16(7):641–646. doi: 10.1089/jmf.2012.0022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 International Journal for Research in Applied Sciences and Biotechnology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.