Molecular Markers for Human Sex Determination in Forensic Genetics Analysis
Keywords:
Sex determination, Forensic DNA, SRY, AmelogeninAbstract
Sex determination is indispensable in forensic anthropology, sexual disorder, and also as part of large-scale genetic population studies. The purpose of this investigation is to determine the human sex from whole blood using multiplex PCR analysis. Blood samples from 75 male and 70 female healthy volunteers were taken from Tikrit city, Iraq. Our study identified a reliable set of three primer locus, namely SRY, ALT1 (internal control) and amelogenin locus. The SRY primer on the Y chromosome showed a 254 bp of PCR product, with 100% accuracy for human male identification. Thus, the pair of SRY primers was considered a strong genetic marker for human sex identification. Amelogenin regions in the Y chromosome showed a true positive band (236 bp) with 100% accuracy on sex identification. Amelogenin regions in X chromosome also showed positive bands (330 bp) in female samples and positive band in male samples except for two samples showed a negative band (null bands). The most obvious finding from this study is that multiplex PCR of ALT1 and SRY is consider as a reliable genetic marker for human sex identification. The research has also shown that amelogenin is good genetic marker for human sex identification.
Downloads
References
Siegel, J. A., & Saukko, P. J. (2012). Encyclopedia of forensic sciences. Academic Press.
Macaluso Jr, P. J. (2010). Sex discrimination potential of permanent maxillary molar cusp diameters. J Forensic Odontostomatol, 28(1), 22-31.
Maulani, C., & Auerkari, E. I. (2020). Molecular analysis for sex determination in forensic dentistry: a systematic review. Egyptian Journal of Forensic Sciences, 10(1), 1-9.
Kumar, N., Chauhan, A., Gupta, R., Maitray, A., & Sharma, D. (2019). DNA profiling from blood traces present on clothing’s and detected by Benzidine test in forensic cases. Forensic Research Criminology International Journal, 7(2), 63-66.
Guha, P., Das, A., Dutta, S., & Chaudhuri, T. K. (2018). A rapid and efficient DNA extraction protocol from fresh and frozen human blood samples. Journal of clinical laboratory analysis, 32(1), e22181.
Mardan‐Nik, M., Saffar Soflaei, S., Biabangard‐Zak, A., Asghari, M., Saljoughian, S., Tajbakhsh, A., & Ghayour‐Mobarhan, M. (2019). A method for improving the efficiency of DNA extraction from clotted blood samples. Journal of clinical laboratory analysis, 33(6), e22892.
Akane, A., Shiono, H., Matsubara, K., Nakahori, Y., Seki, S., Nagafuchi, S., & Nakagome, Y. (1991). Sex identification of forensic specimens by polymerase chain reaction (PCR): two alternative methods. Forensic science international, 49(1), 81-88.
Masuyama, K., Shojo, H., Nakanishi, H., Inokuchi, S., & Adachi, N. (2017). Sex determination from fragmented and degenerated DNA by amplified product-length polymorphism bidirectional SNP analysis of amelogenin and SRY genes. Plos one, 12(1), e0169348.
Cheng JB, Liu Q, Long F, Huang DX, Yi SH. Analysis of the Yp11. 2 Deletion Region of Phenotypically Normal Males with an AMELY-Null Allele in the Chinese Han Population. Genetic testing and molecular biomarkers. 2019 May 1;23(5):359-62.
Maloy, S., & Hughes, K. (Eds.). (2013). Brenner's encyclopedia of genetics. Academic Press.
US National Library of Medicine. SRY gene sex-determining region. 2019. https://ghr.nlm.nih.gov/gene/SRY. Accessed: 19 May 2019.
Temel, S. G., Gulten, T., Yakut, T., Saglam, H., Kilic, N. İ. Z. A. M. E. T. T. İ. N., Bausch, E. & Scherer, G. (2007). Extended pedigree with multiple cases of XX sex reversal in the absence of SRY and of a mutation at the SOX9 locus. Sexual Development, 1(1), 24-34.
Kida, M., Sakiyama, Y., Matsuda, A., Takabayashi, S., Ochi, H., Sekiguchi, H., & Ariga, T. (2007). A novel missense mutation (p. P52R) in amelogenin gene causing X-linked amelogenesis imperfecta. Journal of dental research, 86(1), 69-72.
Nakahori, Y., Takenaka, O., & Nakagome, Y. (1991). A human XY homologous region encodes “amelogenin”. Genomics, 9(2), 264-269.
Rubio, L., Martinez, L. J., Martinez, E., & De Las Heras, S. M. (2009). Study of short‐and long‐term storage of teeth and its influence on DNA. Journal of forensic sciences, 54(6), 1411-1413.
Wijchers, P. J., & Festenstein, R. J. (2011). Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends in genetics, 27(4), 132-140.
Arnold, A. P. (2012). The end of gonad-centric sex determination in mammals. Trends in genetics, 28(2), 55-61.
Lissoni, S., Baronchelli, S., Villa, N., Lucchini, V., Betri, E., Cavalli, P., & Dalprà, L. (2009). Chromosome territories, X; Y translocation and Premature Ovarian Failure: is there a relationship?. Molecular cytogenetics, 2(1), 1-11.
Searle, C. J., Smith, K., Daniels, G., Maher, E. J., & Quarrell, O. (2013). Cell‐free fetal DNA sex determination identified a maternal SRY gene with a known X chromosome deletion. Prenatal diagnosis, 33(6), 612-613.
Dotto, G. P. (2019). Gender and sex—time to bridge the gap. EMBO molecular medicine, 11(5), e10668.
Steinlechner, M., Berger, B., Niederstätter, H., & Parson, W. (2002). Rare failures in the amelogenin sex test. International journal of legal medicine, 116(2), 117-120.
Butler, E., & Li, R. (2014). “Genetic markers for sex identification in forensic DNA analysis,” Journal Forensic Investigation, vol. 2, no. 3, pp. 1–10.
Michael, A., & Brauner, P. (2004). Erroneous gender identification by the amelogenin sex test. Journal of Forensic Science, 49(2), 1-2.
Gaaib, J. N., Nassief, A. F., & Al-Assi, A. (2011). Simple salting-out method for genomic DNA extraction from whole blood. Tikrit J Pure Sci, 16(2), 1813-662.
Cui, K. H., Warnes, G. M., Jeffrey, R., & Matthews, C. D. (1994). Sex determination of preimplantation embryos by human testis-determining-gene amplification. The Lancet, 343(8889), 79-82.
Gunter, C., Paradee, W., Crawford, D. C., Meadows, K. A., Newman, J., Kunst, C. B., & Warren, S. T. (1998). Re-examination of factors associated with expansion of CGG repeats using a single nucleotide polymorphism in FMR1. Human molecular genetics, 7(12), 1935-1946.
Faerman, M., Filon, D., Kahila, G., Greenblatt, C. L., Smith, P., & Oppenheim, A. (1995). Sex identification of archaeological human remains based on amplification of the X and Y amelogenin alleles. Gene, 167(1-2), 327-332.
Naik, P. R., Acath, D. D., Sharma, G. H., & Navalkar, A. R. (2012). Viability of human dental pulp in determination of sex of an individual by identifying SRY gene through DNA analysis: A single blind pilot study. Journal of Indian Academy of Oral Medicine and Radiology, 24(2), 133.
Tungwiwat, W., Fucharoen, S., Fucharoen, G., Ratanasiri, T., & Sanchaisuriya, K. (2008). Accuracy of fetal gender detection using a conventional nested PCR assay of maternal plasma in daily practice. Australian and New Zealand Journal of Obstetrics and Gynaecology, 48(5), 501-504.
Dong-ling, T., & Yan, A. C. L. (2014). Noninvasive prenatal analysis by Multiplex fluorescent PCR of maternal plasma DNA.
Abdul-adheem, H. (2018). Early fetal gender determination using convention nested PCR assay of maternal serum: New technologies and clinical applications in Nasiriya province. University of Thi-Qar Journal Vol. 13 No.3 SEP
Chen, H., Lowther, W., Avramopoulos, D., & Antonarakis, S. E. (1994). Homologous loci DXYS156X and DXYS156Y contain a polymorphic pentanucleotide repeat (TAAAA) n and map to human X and Y chromosomes. Human mutation, 4(3), 208-211.
Khan, R., Tejasvi, M. A., & Paramkusam, G. (2019). Comparison of gender determination from dental pulp and dentin after exposure to various environmental conditions: A polymerase chain reaction-based SRY gene study. Contemporary clinical dentistry, 10(2), 256.
Dash, H. R., Rawat, N., & Das, S. (2020). Alternatives to amelogenin markers for sex determination in humans and their forensic relevance. Molecular biology reports, 47(3), 2347-2360.
Lim, J. J. Y., Khamis, M. F., & Abd Rashid, N. H. B. (2021). Application of Two Sex Markers by Nested PCR for Gender Determination. Indian Journal of Forensic Medicine & Toxicology, 15(2), 2637.
Thangaraj, K., Reddy, A. G., & Singh, L. (2002). Is the amelogenin gene reliable for gender identification in forensic casework and prenatal diagnosis?. International journal of legal medicine, 116(2), 121-123.
Shadrach, B., Commane, M., Hren, C., & Warshawsky, I. (2004). A rare mutation in the primer binding region of the amelogenin gene can interfere with gender identification. The Journal of molecular diagnostics, 6(4), 401-405.
Liu Y, Guo L, Jin H, Li Z, Bai R, Shi M, Ma S. Developmental validation of a 6-dye typing system with 27 loci and application in Han population of China. Scientific reports. 2017 Jul 5;7(1):1-9.
Kashyap, V. K., Sahoo, S., Sitalaximi, T., & Trivedi, R. (2006). Deletions in the Y-derived amelogenin gene fragment in the Indian population. BMC medical genetics, 7(1), 1-7.
Caratti, S., Voglino, G., Cirigliano, V., Ghidini, A., Taulli, R., Torre, C., & Robino, C. (2009). Amplification failure of the amelogenin gene (AMELX) caused by a primer binding site mutation. Prenatal Diagnosis: Published in Affiliation With the International Society for Prenatal Diagnosis, 29(12), 1180-1182.
Siddique N, Shahid AA, Sughra K. Diversification of Pakistani Amelogenin-Y-Null Male Haplotypes. Scientifica. 2021 May 4;2021.
Salih, M. H., Al-Assie, A. H. A., Sabbah, M. A. (2021). Effects of sampling, DNA amount and reduced volume of AmpFLSTR Identifiler Plus kit on STR profile. The Second International & the Fourth Scientific Conference of College of Science - Tikrit University
Salih, M. H., Al-Assie, A. H. A., Sabbah, M. A. (2021). Analysis of allele frequencies of the selected 15 autosomal STR markers in Tikrit population – Iraq with comparison to Middle Eastern, African, and Europeans. AsPac J. Mol. Biol. Biotechnol. Vol. 29 (2) : 75-84.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.