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ABSTRACT 
The mathematical study of continuity, 

connectedness and related phenomena in a broad context 

might be called generic topology. The real line, Euclidean 

spaces (including infinite dimensions), and function spaces 

are some of the places where these notions initially emerge. 

First, we must discover an abstract environment in which 

we can articulate findings of continuity and related notions 

(convergence, compactness, connectedness, and so forth) 

that occur in these more concrete situations. Frechet and 

Hausdor laid the foundations for general topology in the 

early 1900s. General topology is frequently referred to as 

point-set topology since it is based on the idea of sets. On 

the other side of the spectrum is algebraic topology, which 

applies abstract algebraic concepts to the study of de ne 

algebraic invariants of spaces; and, on the other hand, 

differential topology examines topological spaces with extra 

structure in order to study differentiability (basic general 

topology only generalizes the notion of continuous 

functions, not the notion of differentiable function). Since 

Bendse and Kikuchi's groundbreaking publication on 

topology optimization in 1988, topology optimization has 

evolved tremendously. "density," "level set," "topological 

derivative," 'phase field', and a slew of other terms are now 

being used to describe the notion. An overview, 

comparison, and critical analysis of the various techniques, 

their strengths, shortcomings, similarities and 

dissimilarities are presented in this work. 
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I. INTRODUCTION 
 

Topology is the topic of study when it comes to 

figuring out how objects fit together. There will soon be 

a presentation of concepts like closed and open forms, 

consistency, and homeomorphism. Geometric algebraic 

and arithmetic topologies were initially derived from 

problems in analysis and differential geometry, but they 

now appear in almost every branch of mathematics, 

including algebra, combinatorics, and logic. In general 

topology, a wide range of analytical and geometric 

issues may be studied in depth. The topology of a given 

object may be constructed in a basic manner. This means 

that patterns compatible with the original topology 

should be studied. Think of the smooth manifold 

structure of an individual's family as an example. 

Category homomorphisms that were also smooth 

mappings of the fundamental manifold are the proper 

morphisms to investigate. Individuals' ability to 

understand morphisms and come up with proofs is 

influenced by the relationship between these two factors. 

An algebraic variation of Zariski's topology is yet 

another unusual case. As a result of exploiting the 

topology of the Zariski group, it is possible to create 

continuous reasoning for polynomial values in 

practically any domain. 

 

II. DEFINITION AND TERMS OF 

TOPOLOGY 
 

Before we can get to the main topic of this 

review article, topology optimization, we must first 

define and understand the term "topology." As an 

etymology of the Greek noun topos, the term indicates 

that it relates to a particular location or area. According 

to Euler's Polyhedron Rule, even when arbitrary 

deformations are applied to three-dimensional objects 

like cubes, cubes, and octohedron tetrahedrons, the rule 

holds in three-dimensional space. ... All R3 subsets are 

included in topological domains (including straight lines, 

collections of points, and so on). A mathematical 

transformation or reversibly unique mapping may be 

used to describe any sort of distortion. Topological map-

ping is a term used to describe transformations from one 

topological domain to another that do not affect or 

establish new neighbourhood connections. Two domains 

are said to be topologically comparable if a topological 

mapping exists between them. It is for this reason that a 

domain's invariant topological attributes are those that 

remain constant no matter how the domain's topology 

changes. 

 

III. HOW TOPOLOGY DETECTS 

CERTAIN PHASES OF MATTER 
 

Geometry's topology division deals with large-

scale characteristics of forms. If a coffee cup were 

constructed of rubber, it would be impossible to discern 

between a doughnut and a coffee cup, according to a 

popular myth. Local quantities (distances, curvature) 

may be measured using a geometer to identify the coffee 

cup from a doughnut. A topologist with apparently faulty 

eyes can only see that each pretzel has one hole, but at 

least they can tell them apart from a pretzel with two 

holes. [3]. 
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3.1. A simple example from geometry 

Let's start with a simple example of quantum 

physics. An endless line L is given a certain number of 

numbered balls to be inserted at n = 1, 2, etc. The "balls" 

shown in the illustrations below are, in fact, actual points 

of different sizes. We'd want to look at every possible 

configuration of these balls. One ball on the line L gives 

us everything that we need to know if we have only one. 

What happens if there are n = 2 balls? Two points on the 

line L depict a two-ball arrangement in this example. 

What does it look like when all of the point pairings are 

combined? A two-dimensional plane, of course. If we 

follow Descartes and name each point of L with a real 

number x, this becomes more evident. For any two 

points on L, an ordered pair (x,y) of real numbers may 

be equated to one. You can find all the pairs that form 

the x and y plane here. You may get additional 

information about the (x,y,z) arrangement of three points 

on L by starting there. A great illustration of a moduli 

space is the set of all possible arrangements of n balls on 

L. [4]. 

 

 
Figure 1. Motion in a moduli space 

 

There is a shape to every possible arrangement. 

A one-dimensional line has n = 1, a two-dimensional 

plane has n = 2, and any number more than 3 has n = 3. 

How many deformation classes are there? For example, 

we may question whether every pair of configurations 

can be warped one to the other. To link two dissimilar 

configurations, as we've seen, the route is the only 

deformation that can do so in S. We use the notation 

'0(S)' to refer to S's path components. The only way to 

link two places in the same route component is through a 

path. To put it another way, a (straight line) route may 

link any two locations in S. A two-dimensional 

illustration of this may be seen in Figure 1. If all 

conceivable configurations are simultaneously moved to 

one fixed configuration, such as one where the red balls 

are placed on each side of L, then constrictions may be 

established in the plane. 

 

 
Figure 2. Moduli space of gapped configurations 

 

We don't have any intriguing topologies as of 

yet. Let's add a "gap condition" to the equation. Please 

do not allow the balls (which are really points) to 

coincide. Starting with all possible configurations, we 

eliminate the portion of the moduli space S that 

corresponds to configurations in which at least two balls 

coincide to arrive at the gapped moduli space S'. Figure 

2 shows a diagonal blue line that represents two 

coinciding locations of L for n = 2 balls. This line is the 

excluded set for n = 2. There are two paths in the 

complimentary space S'. There is a basic invariant that 

distinguishes the two halves of the journey: the sequence 

of integers on the line L read from left to right. As seen 

in Figure 2, the sequence is (2 1) and the other route 

component is (2 1). In other words, the number 1. As a 

consequence, a permutation invariant is associated with 

the gapped configuration. This permutation completely 

indicates the deformation class of the configuration [5]. 

3.2. Moduli spaces in quantum mechanics 

Quantum physics rather than geometry is the 

source of our story's moduli space Since the properties of 

quantum systems, such as pressure, temperature, and 

magnetic fields, are continually changing, we might 

imagine a moduli space Q with points representing these 

quantum mechanical systems. In a quantum system, 

there are three components: a Hilbert space of quantum 

states, a Hamiltonian operator for measuring energy 

levels, and the G group of symmetry. There must be a 

gap in the energy spectrum slightly above the lowest 

energy for the Hamiltonian to have a range of potential 

energies. The letter Q may be used to represent the data 

in a single quantum system, as seen in Figure 3. 

Quantum systems with gaps may be found in the Q' 

subspace. There is no gap in Figure 3, which depicts a 

quasiquantum system. Let's get started, since there's a lot 

on the line. 

Compute the set π0(Q') of deformation classes 

of gapped quantum systems. 

Defining the system's parameters is necessary 

to arrive at a relevant issue. space's dimensions and 

symmetry group G. 

 

 
Figure 3. Moduli space of gapped quantum systems 

 

3.3. Transition to topological field theory 

According to physics, a quantum system's low-

energy behaviour encodes its deformation class. The 

topology is not intended to be altered by high-energy 

fluctuations. This is a good fit for geometry's intuition. 

One may do a generalised Fourier analysis and 

decompose functions (including differential forms) 

based on their generalised frequency in an open space 

https://www.ias.edu/idea-tags/quantum-mechanics
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with a smooth curvature, referred to as a manifold. 

Large-scale topology can only be seen by low-frequency 

functions, which are locally constant on the manifold; 

high-frequency functions are better at detecting small-

scale geometric characteristics. It is possible to create a 

topological invariant from the low-energy section of a 

quantum theory in quantum mechanics [7]. 

 

 
Figure 5. A simple lattice system 

 

Taking the following step will be a great leap. 

Using a quantum field theory, we presume that the low-

energy section of the system can be accurately described. 

If the initial quantum system is a quantum field theory, 

then this isn't such a hard jump to make. There are no 

lattices of degrees of freedom in these systems, and the 

Hamiltonian is a sum of discrete numbers. Lattice 

structures have a distinct character, as seen in Figure 5. 

In spite of this, they often have continuum bounds in 

which the degrees of freedom are fields: functions and 

other recognisable objects from smooth geometry We 

presume that a scale-independent quantum field theory 

exists at low energies, but we haven't proven it. 

3.4. A mathematical framework for quantum field 

theory 

We're getting closer to deriving a mathematical 

issue from the categorization problem in physics. 

However, in order to categorise these objects—

topological quantum field theories—we must first define 

them mathematically. There have been mathematical 

representations of quantum field theory from the 

inception of quantum theory. A geometric axiom system 

for scale-invariant quantum field theories developed in 

the late 1980s when mathematicians started to 

concentrate on topological theories. The Oxford school 

has made significant contributions to the field. [9]. 

 

 
Figure 6. QFT from a bordism point of view 

 

The basic structure is shown in Figure 6, and 

that is all that is required to be mentioned. Because d is 

the dimension of space, spacetime has a dimension of 

d+1. As shown in the diagram, an evolution starts at Y0 

and concludes at Y1. H0 and H1 vector spaces, as well 

as a linear map F(X) linking them, are outputs of the 

field theory F throughout its development. An example 

of a geometric representation of quantum information is 

shown here. Map F is invariant to input data 

deformations in a topological theory of topology. 

IV. STUDYING THE SHAPE OF DATA 

USING TOPOLOGY 
 

When it comes to data collection and storage, 

it's known as the "data explosion," and it's happening all 

over the world in fields such as research, engineering, 

business, and the government. Large data sets are all 

around us, and they have important implications for our 

daily lives and for society as a whole. This is something 

we are reminded of every time we open the news or a 

computer. During the last fifteen years, the field of 

topological data analysis (TDA) has seen an explosion of 

interest and activity, resulting in both useful new 

methods for analysing data as well as delightful 

mathematical surprises. TDA has been used in cancer, 

astronomy, neurology, image processing, and 

biophysics, among other fields of study. TDA's primary 

purpose is to use topology, one of the most important 

fields of mathematics, to build tools for analysing 

geometric aspects in data. Data" is merely a limited 

collection of points in space that we refer to as "points." 

[10]. 

 

 
Figure 7: A data set with three clusters; 

 

Consider the data shown in Figure 7 as a first 

example. Three separate clusters may be seen in the data. 

The first form of geometric feature we look at in TDA 

are these kinds of clusters. Our goal is to identify and 

count the number of different clusters in the data. When 

the data is noisy, as seen in Figure 8, we would want to 

be able to accomplish this. 

Topological data analysis also examines "loops" as a 

geometric aspect of data. Loops are shown in Figure 8 of 

the dataset. If a data collection is damaged by noise, as 

shown in Figure 10, we still want to be able to recognise 

loops. 

 

 
Figure 8: A data set with a loop; Figure 10: A data 

set with a noisy loop 
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The third kind of geometric feature we look at 

in TDA is a "tendril." A centre nucleus is linked to three 

outer tendrils, as seen in Figure 11. A dataset constructed 

in this way requires identifying and counting the tendrils, 

as well as segmenting the data into its numerous tendrils. 

 

 
Figure 9: A data set with three tendrils emanating 

from a central core 

 

In TDA research, the goal is to create tools for 

detecting and visualizing these sorts of geometric 

characteristics, as well as methods for assessing the 

statistical importance of these features in randomly 

collected data. The emphasis is on building tools for 

analyzing geometric aspects in high-dimensional data 

since so much of the data generated in scientific 

applications is in high-dimensional environments. 

When it comes to data analysis, we are 

interested in using topology's capabilities for calculating 

the number of holes and components that a geometric 

object has. There are no holes in the data set, hence the 

number of holes and components of X will not tell us 

anything important about the geometric characteristics in 

the data set X of n points in space. 

As a result, instead of explicitly examining the 

topological features of X, we will focus on the qualities 

of a "thickening" of it. 

I'm going to go into great depth about this. To 

begin, let's pretend there is just one possible collection of 

X points in the plane (2-D space). Let δ be a positive 

number, and let T(X, δ) be the set of all points in the 

plane within distance δ from some point in X; we think 

of T(X, δ) as a “thickening” of the data set X. 

“Figure 9 shows T(X1, δ1) The original data X1 

is shown in black and red for some positive integer 1. 

Let X2 be the data set shown in Figure 9. What's seen in 

Figure 12 T(X2, δ2) in red, for some choice of positive 

number δ2, together with X2 in black. For especially nice 

data sets X and good choices of δ, the clusters in X will 

correspond to components of T(X, δ) and the loops 

in X will correspond to holes in T(X, δ). For instance, in 

Figure 9 the clusters in X1 correspond to ‘the 

components of T(X1, δ1), and in Figure 10) the loop 

in X2 corresponds to the hole in T(X2, δ2)”. 

 
Figure 10:T(X1, δ1), for some choice of δ1, is shown 

in red; X1 is shown in black.;  Figure 13: T(X2, δ2), 

for some choice of δ2, is shown in red; X2, is shown in 

red; X2 is shown in black 

 

As a result, more complex variations of this 

fundamental method are necessary to cope with the 

majority of data seen in reality. Recent research on TDA 

has concentrated on producing new variants. 

Consideration of the topological qualities of the 

complete family of objects is a key notion in this 

approach. T(X, δ) as δ varies than it is to consider the 

topological properties of T(X, δ) for a single choice of δ. 

This is the idea behind persistent homology, a key 

technical tool in TDA. 

 

V. IDENTIFYING ORDER IN 

COMPLEX SYSTEMS 
 

Nature may have been organized in a way that 

cannot be understood or that can only be understood 

from a different perspective. In order to comprehend 

these notions, mathematicians often turn to the most 

exact tool we have: a mathematical analysis. 

Calculus and topology, two qualitative branches 

of mathematics, have received much less attention in 

mathematical applications than their quantitative 

counterparts (the study of properties that are preserved in 

geometric figures despite continuous deformations). 

Robert MacPherson, Hermann Weyl Professor at the 

School of Mathematics, is eager to see whether topology 

may be used outside of high-energy physics (such as 

Chern-Simons theory). [11] 

One of Princeton's initial professors in 1932 and 

the driving force behind Princeton's position as the world 

leader in topology was Oswald Veblen. MacPherson 

launched graduate engineering seminars at Princeton 

University some years ago with the assumption that 

topological thinking may be applied to tackle problems 

relating to materials. Professors MacPherson and 

Srolovitz of Princeton University's Department of 

Mechanical and Aerospace Engineering found John von 

Neumann's two-dimensional solution to a problem that 

had been open since 1952 two years ago. [12]. 
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The work of MacPherson and a partner on 

models of three-dimensional grain formation has 

ramifications for several materials, including foam. 

Foams and metals both have three-dimensional 

cellular structures that affect critical material qualities 

such as strength and magnetism, whereas soft materials 

like metals and ceramics have more sophisticated fluid 

behaviour, such as breaking waves. Since the three-

dimensional von Neumann formula is relevant for this, 

An investigation of these concepts continues at the 

Institute, where they are examined. Jeremy Mason, a 

postdoctoral expert in hard materials from the 

Massachusetts Institute of Technology, and Randall 

Kamien, a professor of soft materials from the 

University of Pennsylvania, will join the School of 

Mathematics in the forthcoming academic year. [13]. 
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