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ABSTRACT 
Despite the fact that India has some of the world’s 

worst levels of air pollution, the link between air pollution 

and social disadvantages has not been thoroughly 

investigated. This study combines fine particulate matter 

PM2.5 concentration data from satellite observations, a 

global chemical transport model, and ground-based 

measurements with district-level socio-demographic data 

from the 2011 Census of India, using a distributive 

environmental justice paradigm. After controlling for 

relevant contextual factors and spatial clustering, the goal 

of the study is to see if annual average PM2.5 concentrations 

(2010) and recent increases in average PM2.5 

concentrations (2010–2016) are unequally distributed 

among socially disadvantaged populations and household 

groups. In India, more than 85% of individuals and 

families live in districts where PM2.5 levels surpass 

international guidelines. Although PM2.5 concentrations are 

much greater in more populated districts, primarily in 

northern India, less urbanized areas, primarily in southern 

and central India, have recently seen increases. According 

to multivariable statistical analysis, higher PM2.5 

concentrations were found in districts with higher 

percentages of Scheduled Castes (SCs), young children, and 

households with poor housing conditions and no toilets; 

and higher PM2.5 increases were found in less urbanized 

districts with higher percentages of SCs, females, children, 

people with disabilities, and households with no toilets. 

These findings emphasize the need of considering the role 

of air pollution in amplifying the effects of India's social 

disadvantages. 

 

Keywords- Air Feature, Explanatory Values, 

Environment Injustice, Variables Dependent. 

 

 

I. INTRODUCTION 
 

While outdoor air pollution is a global issue, 

India is thought to have some of the worst levels, 

particularly in terms of small particulate matter PM2.5 

pollution. According to the 2019 Global Burden of 

Disease report, air pollution caused 1.67 million deaths 

in India (17.8% of total fatalities), with ambient PM2.5 

pollution accounting for 10.4% of those deaths. 

According to this study, the economic losses associated 

with air pollution-related premature death and morbidity 

amounted to 1.36 percent of India's GDP, implying that 

the negative health consequences of air pollution may 

have an impact on India's long-term economic goals. 

Between 2011 and 2016, the World Health Organization 

(WHO) conducted research that looked at 100 nations 

and found that 14 of the top 15 cities for PM2.5 pollution 

were in India. Industrial and automobile emissions, 

construction dust and debris, reliance on thermal power 

for electricity, garbage burning, and low-income and 

rural households' use of wood and dung for cooking and 

heating are the major contributors to India's particle air 

pollution. While switching to alternative energy sources 

may help, concurrent increases in affluence and 

intensification of poverty, and a lack of effective 

regulations and investment, are likely to keep air 

pollution at bay. 

Previous studies of PM2.5 pollution have 

concentrated on mapping country-level distribution 

patterns and relating them to global burden of disease 

estimates, but they have not taken into account how 

these patterns relate to demographic traits and 

socioeconomic disadvantages. In India, such research 

has looked at PM2.5 pollution patterns at the state and 

national levels. In addition, India's air pollution has 

frequently been scrutinized in terms of negative health 

consequences or policy paths to reduce pollution. These 

findings appear to show that air pollution has widespread 

societal repercussions and hence needs to be 

supplemented with an examination of how air pollution's 

consequences may affect specific areas and demographic 

groups in different ways. EJ, which focuses on studying 

environmental risk loads borne by socially 

disadvantaged communities, becomes a suitable 

framework for further analysis of socio-spatial patterns 

of air pollution in India. 

The goal of this study is to see if socially 

disadvantaged and marginalized communities are 

disproportionately concentrated in locations with higher 

levels of particle air pollution. Annual average PM2.5 

concentration data obtained from a combination of 

satellite observations, a global chemical transport model, 

and available ground-based measurements are used to 

measure air pollution. The 2011 Indian Census provided 

information on population and household characteristics. 

The district is our unit of analysis since it allows for 

finer-scale research than at the state level, and the 

utilization of Census data relating to district level 

features in India. After adjusting for important 

contextual factors and data clustering, we want to see if 

(a) average PM2.5 concentrations in 2010 and (b) 

increases in average PM2.5 concentrations from 2010 to 

2016 are distributed inequitably among socially 

disadvantaged populations and household groups. 

Statistical comparisons of air quality standards set by 

international and national norms, bivariate linear 

correlations, and multivariable generalized estimating 

equation (GEE) models are among the statistical 

analyses. 
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In three ways, the purpose of this article is to 

further study the distribution and effects of air pollution 

in India. First, this study aims to demonstrate the 

importance of incorporating environmental injustice into 

social and environmental policy-making by looking at 

associations between particulate air pollution and social 

inequalities in India, particularly in contexts where rising 

economic growth is accompanied by persistent and 

widening social inequities. Second, most international 

air pollution studies, such as WHO and IHME (Institute 

for Health Metrics and Evaluation) reports, focus on data 

relevant to the national scale. The focus in India is on 

state level or the most polluted cities. Thus, our district-

level approach gives the study of air pollution in India a 

new geographical dimension. Third, while India's urban 

expansion is focused in major metropolises, cities below 

the metropolitan level are also growing in population 

and GDP. The ability to focus on emerging patterns of 

air pollution in freshly urbanizing areas is enabled by a 

district-level investigation. Overall, given India's 

increasing urbanization and significant contributions to 

global economic and environmental results, this article 

aims to address the growing need to investigate air 

pollution. 

 

II. METHODS 
 

Using data provided by Van Donkelaar et al., 

the two dependent variables for this study were 

estimated as PM2.5 pollution in 2010 and the change in 

PM2.5 pollution between 2010 and 2016. Explanatory 

factors were gathered from the 2011 Census of India and 

included variables that have been frequently used in 

previous distributive EJ studies and characteristics 

specific to India. 

2.1. Variables Dependent  

For the purposes of this study, ambient 

particulate matter pollution was defined as the 

population-weighted average mass concentration of 

particles having an aerodynamic diameter of less than 

2.5 micrometers (PM2.5) in a cubic meter of air, with a 

spatial resolution of 0.01 x 0.01 across the globe 

(approximately 11 x 11 km at the equator). We used 

surface PM2.5 concentrations calculated by Van 

Donkelaar et al. using a combination of aerosol optical 

depth data from multiple satellite products and a global 

chemical transport model based on global emission 

inventories, which were then calibrated to ground-based 

PM2.5 observations using a geographically weighted 

regression method (GWR). Several more studies 

concentrating on PM2.5 pollution in India have used this 

methodology and data. 

Annual mean global GWR-adjusted PM2.5 

estimations for our research were downloaded as an 

ArcGIS-compatible NetCDF file from the Atmospheric 

Composition Analysis Group website. ML: Info 

Map/Lead Dog Consulting provided an ArcGIS shape 

file with a digitized map of districts demarcated for the 

2011 Census of India. The 0.01 x 0.01 resolution grid 

containing modeled estimates of surface PM2.5 

concentrations was overlaid on the district boundaries 

with ArcGIS 10.6.1 software to produce our dependent 

variables for investigating the distributive EJ 

implications of PM2.5 exposure (Environmental Systems 

Research Institute, Redlands, USA). On the basis of 

pixel values from the PM2.5 concentration grid, we used 

the zonal statistics function to calculate the yearly 

average PM2.5 concentration for each individual district 

in 2010 and 2016. 

Our first dependent variable was a district-level 

estimate of annual average surface PM2.5 concentration 

in 2010, the year in which our population and housing 

data for the 2011 Census of India were gathered. The 

second variable reflected yearly average PM2.5 

concentration changes at the district level between 2010 

and 2016, calculated as a ratio of the two PM2.5 

concentration values (2016/2010). Following our 

research focus on increases in PM2.5 concentrations 

during this time period, we used statistical analysis to 

look at districts where this ratio was more than 1.0. We 

used 2016 values because they were the most recent year 

for which modeled estimates of surface PM2.5 

concentrations were available in the 0.01 x 0.01 

resolution dataset at the time of our analysis, and they 

were also the most temporally close to the 2011 Census 

of India data while still allowing us to measure 

observable change. Our dependent variables' 

measurements are given in g/m3, and summary data at 

the district level is shown in Table 1. 

 

Table 1: Shows the summary statistics for the factors 

examined 

 
 

2.2. Analyses Statistical 

The World Health Organization (WHO), the 

United States Environmental Protection Agency 

(USEPA), the European Union (EU), and India's 

National Ambient Air Quality Criteria all approved air 

quality standards or thresholds in 2010. (NAAQS). We 

next calculated the overall proportions of people and 

homes living in districts with ambient PM2.5 pollution 

levels above these limits, and the proportions of socially 

disadvantaged populations and households (as a 

percentage of the total population in India). 
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Annual average PM2.5 concentrations (2010) 

based on all 640 districts in India and the ratio of PM2.5 

concentrations (2016/2010) based on 601 districts that 

experienced an increase in PM2.5 concentrations (i.e., the 

ratio of 2016/2010 PM2.5 concentrations > 1.0) were 

investigated using bivariate correlation analysis. 

The EJ implications of both PM2.5 (2010) 

concentrations and growth in PM2.5 concentration ratio 

(2016/2010) were then investigated using generalized 

estimating equations (GEEs), a multivariable modeling 

technique suitable for evaluating clustered data. In 

addition to accounting for clustering of variables across 

units of analysis, GEEs loosen key assumptions of 

classic regression models, imposing no stringent 

distributional requirements for the included variables. 

Districts in India are divided into 35 states and union 

territories (UTs). As a result, our clustering criterion was 

based on the state or UT in which each district was 

located, resulting in 1 to 71 districts being assigned to 

each state/UT cluster. 

For each of our two dependent variables, a 

separate GEE was calculated: the yearly average PM2.5 

concentration in 2010 (640 districts) and the ratio of 

PM2.5 concentrations in 2016 and 2010 (601 districts 

with a ratio > 1.0). Despite the fact that the second GEE 

uses data from both 2010 and 2016, the explanatory 

variables are based on data from 2010, or the start of the 

period for which PM2.5 increases are estimated. By 

measuring explanatory factors before the start of the 

time period during which change is measured, potential 

endogeneity among explanatory variables in a 

multivariable model can be decreased, and this technique 

has been suggested in previous econometric studies on 

modeling temporal change. 

Three different correlation structure 

specifications were considered for each GEE: 

"independent," which assumes no dependency and all 

off-diagonal elements of the working correlation matrix 

are zero; "exchangeable," which assumes constant intra-

cluster dependency and all off-diagonal elements of the 

correlation matrix are equal; and "unstructured," which 

assumes a completely general correlation matrix that is 

estimated without constraints. All GEEs were modeled 

with the three matrices, and the best appropriate 

specification was determined using the QIC (quasi-

likelihood under the independence model criterion). We 

picked the 'independent' corre-lation matrix for the GEE 

using the average PM2.5 concentration 2010 as the 

dependent variable, and the 'unstructured' corre-lation 

matrix for the GEE using the PM2.5 concentration ratio 

2016-2010 as the dependent variable, based on this 

model fit criterion. 

We used logarithmic and identity link functions 

to evaluate the normal, gamma, and inverse Gaussian 

distributions with logarithmic and identity link functions 

to find the best-fitting models. A logarithmic link 

function estimates the natural logarithm of the dependent 

variable, whereas an identity link function implies the 

dependent variable can be predicted directly. For the 

GEE, we chose the gamma distribution with logarithmic 

link function, with the average PM2.5 concentration 2010 

as the dependent variable, and the normal distribution 

with an identity link function, with the PM2.5 

concentration ratio 2016-2010 as the dependent variable. 

Both of these model specs produced the lowest QIC 

value. 

All independent variables were standardized 

before being used in the GEEs. We also used the 

variance inflation factor, tolerance, and condition index 

criteria to examine potential multicollinearity among 

these variables, and found that the GEEs are unaffected 

by multicollinearity. The statistical significance of each 

individual variable coefficient was assessed using two-

tailed p-values from the Wald chi-square test. 

2.3 Variables with Explanatory Values 

For our distributive EJ study of PM2.5 pollution 

exposure, we employed a set of socio-demographic 

variables from the 2011 Census of India that are 

available at the district level. Previous studies on 

distributive EJ and social vulnerability to environmental 

hazards in India influenced our choice of independent 

variables to reflect socially disadvantaged populations. 

Independent variables were acquired from two sources: 

primary census enumeration data from the 2011 Census 

of India and data from the House listing and Housing 

Census. Table 1 shows summary data for independent 

variables at the district level. 

Illiteracy rate, caste, and tribal status were 

among the variables used to measure socioeconomic 

disadvantage, and they had previously been used in 

distributive EJ studies. The literacy rate defined as the 

percentage of the population aged seven and above who 

can read and write basic sentences, has long been used as 

a proxy for socioeconomic position and has been used to 

assess district development. Literacy can influence a 

population's ability to accept pollution as a byproduct of 

its own economic progress or to fight pollution due to 

political power. Illiteracy rates were employed as an 

independent variable in our research to indicate 

disadvantage. The percentage of the population 

belonging to the Scheduled Caste (SC) and Scheduled 

Tribe (ST) groups, as defined by the Indian Constitution, 

was used to represent the two primary socially 

marginalized groups in India. SC marginalization 

highlights prejudice against lower castes in India as a 

result of their traditional methods of subsistence and 

exclusion from ritual power sources. ST refers to social 

groupings that have retained a separate culture, often as 

a result of livelihoods reliant on forests or natural 

resources. While SCs are religiously affiliated with the 

Hindu, Buddhist, and Sikh faiths, STs can be affiliated 

with any faith. According to previous national-level 

study, the percentage of SCs in Indian districts that 

generate industrial hazardous waste is much higher than 

in districts that do not. 
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To investigate the exposure of demographically 

and physiologically sensitive groups to PM2.5 pollution, 

the percentages of the district population who are 

female, aged six years or less, and have a handicap were 

added. Despite the fact that gender has received less 

attention in the distributive EJ literature, the occurrence 

of a masculine sex ratio in northern India makes gender 

a useful component of social exposure to pollution in 

this region. Children's exposure to risks has also been 

understudied in India, although it has been a major 

emphasis of EJ studies in the United States. Because of 

their larger breathing rate to body size ratio and the fact 

that their lungs are still developing, children are thought 

to be more sensitive to air pollution than adults. In the 

United States, EJ studies have indicated that 

communities with a higher population of children have 

significantly higher levels of industrial hazard exposure. 

As an additional explanatory variable, the proportion of 

the population with disabilities was used. Although the 

relationship between disability and air pollution 

exposure has yet to be studied in India, recent studies in 

the United States have found that people with disabilities 

live in neighborhoods where they are exposed to 

significantly more pollution sources than people without 

disabilities. Our research aims to see if these tendencies 

may be found in India as well. 

In addition to the aforementioned factors from 

the Primary Census Enumeration, we used four 

indicators of socioeconomic disadvantage from the 2011 

House listing and Housing Census. These were the 

percentages of households without any assets, such as a 

television, computer, laptop, phone, mobile phone, or 

scooter/car; living in a house that was not in "good" 

condition (either "dilapidated" or "livable"); having no 

drinking water source within their premises (either "near 

premises" or "away from the house"); and having no 

toilet or latrine facility within their premises. These 

variables have previously been used to represent social 

and economic disadvantage in previous research on 

environmental hazards in India, and they are likely to be 

linked to increased intensity of air pollution exposure 

(due to poor housing quality and amenities) and a 

reduced ability to cope with air pollution (due to lower 

economic status). 

It is based on the population of census and 

statutory towns. Census towns have a population of at 

least 5000 people, a population density of at least 400 

persons per square kilometer, and at least 75% of the 

major male employees are employed in non-agricultural 

occupations. Municipalities, corporations, cantonment 

boards, and notified area committees are in charge of 

statutory towns. Previous research has found that 

pollution-producing activities in India are frequently 

located in low-density or sparsely populated areas 

adjacent to densely populated urban centers, in order to 

take advantage of the higher availability of vacant land 

that is still accessible and close to large urban areas. 

Overall, our selection of independent factors represents 

the social and economic traits that are most important for 

understanding the inequities associated with particle air 

pollution exposure. 

 

III. FINDINGS 
 

The district level distribution of population 

density is first displayed in Figure 1 to offer a 

geographic context for comparing and interpreting the 

spatial patterns of our air pollution-related dependent 

variables. Districts in India are divided into five quintiles 

depending on the number of people per square kilometer 

on this map. The Indo-Gangetic Plain, a multi-state 

region spanning northwest to eastern India, is home to 

the districts with the greatest population density numbers 

(IGP). Because of the Ganges and Yamuna rivers, the 

IGP is India's largest agricultural belt and one of the 

world's most densely inhabited Int. J. Environ. Res. 

Public Health 2021, 18, x 7 of 16 regions. In addition, 

the IGP contains 12 of the 14 Indian cities that are 

among the world's top 20 most polluted in terms of 

PM2.5 levels. 
 

 
 

Figure 1: Distribution of 2011 population density by 

district and district in India 

 

On the other hand, southern India, northeast 

India, and northern India have a disproportionately high 

number of districts in the lowest quintile (bottom 20%) 

of PM2.5 concentration. The bordering states of Uttar 

Pradesh (three districts) and Haryana have a larger 

population (one district). When Delhi's districts are 

removed, eight of the top 10 districts are in Uttar 

Pradesh, with two in Haryana, highlighting the IGP's 

high levels of air pollution once again. On the other 

hand, southern India, northeast India, and northern India 

have a disproportionately high number of districts in the 

lowest quintile (bottom 20%) of PM2.5 concentration. 

The discrepancies in air pollution levels between the 

landlocked IGP and southern India have been explained 

by higher population density, the prevalence of coal 

mines, brick kilns, and power plants, and meteorological 

conditions. Lower levels of particle pollution can be 

connected to lower levels of industrialization in the 

northeast and northern India. 
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Figure 2: Surface annual average PM2.5 

concentrations (µg/m3) in India by district in 2010. 

 

Figure 3 depicts the average PM2.5 

concentration ratio distribution at the district level 2016–

2010. In comparison to Figure 2, the geography of recent 

changes in PM2.5 pollution differs significantly from the 

overall pattern of PM2.5 pollution in 2010, indicating a 

more dispersed spatial pattern. The distribution of PM2.5 

growth at the district level does not show a clear spatial 

correlation with the population density distribution 

illustrated in Figure 1. Although there are numerous 

districts in the IGP that are in the highest quintile of 

PM2.5 concentration ratio 2016–2010, additional districts 

in this quintile are in southern, central, and northern 

India. Figure 3 shows significant increases in PM2.5 

pollution in several southern districts, particularly along 

a belt that includes large cities like Bengaluru and 

Hyderabad, both key information technology hubs. 

Increased urbanisation could also be linked to rising air 

pollution along India's northern border. Increases in 

central India coincide geographically with a coal-mining 

area and concomitant industrial activities. Because of 

lower levels, districts where PM2.5 concentrations have 

decreased since 2010 are mostly in Rajasthan in the 

northwest, Mizoram and Manipur in the northeast, and 

Kerala in the south. This is a common misunderstanding. 

 

 
 

Figure 3: Annual average PM2.5 concentrations 

(µg/m3) by district in India from 2016 to 2010. 

Table 2: Shows the percentages of people and 

households in India whose annual average PM2.5 

concentrations above WHO, USEPA, EU, and Indian 

guidelines in 2010. 

 
 

When the EU regulations (25 µg/m3) are 

applied, these figures increase to roughly 13% of the 

population and 15% of households. At least 85 percent 

of the people and households associated with the socially 

disadvantaged categories we studied lived in districts 

where PM2.5 pollution exceeded all of these international 

standards. However, districts with average PM2.5 

concentrations exceeding the higher national threshold 

(40 µg/m3) used in India continue to house 

approximately 56% of the people and 51% of the homes. 

In these areas, the percentages of illiterates, SCs, and 

children outnumber the general population (55.6%), 

while the percentages of poor-quality housing and 

households without toilets outnumber the overall 

percentage of households (51.3 percent). In districts 

where India's PM2.5 requirements are surpassed, 

however, the percentages of STs, women, and 

individuals with disabilities, and households without 

assets and homes with a drinking water source outside 

their premises, are lower than the total population and 

household percentages. 

We used bivariate linear correlations to 

examine the statistical effects of our explanatory 

variables on 2010 PM2.5 concentrations and 2016/2010 

PM2.5 concentration ratios. Table 3 shows the Pearson 

product-moment correlation coefficients associated with 

each pair of variables. According to a study published in 

2010, PM2.5 concentrations are strongly and positively 

related to population density, percentages of the urban 

population, illiterates, SCs, and children, and families 

with poor housing conditions and no toilets. The 

percentages of the female and ST population, and homes 

with no assets and no outside drinking water source, all 

indicate a substantial negative link with PM2.5 pollution. 

The percentages of SCs, children, and households 

without toilets are significantly and positively associated 

with the PM2.5 concentration ratio 2016–2010 in districts 

with an increase, while the percentages of STs and 

households with no assets are negatively associated; 

these results align with PM2.5 pollution correlations. 

Despite their significant negative relationships with 

PM2.5 pollution levels, population density, female 

percentage, proportion of households in poor condition 

housing, and proportion of households with outside 
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drinking water sources have no significant correlation 

with PM2.5 rise. Although the percentage of people with 

impairments has a non-significant relationship with 

PM2.5 pollution, it is strongly and positively linked to a 

rise in PM2.5 levels. 

 

Table 3: Shows the bivariate linear relationships 

between average PM2.5 concentration (2010) and 

PM2.5 concentration ratio (2016/2010) and district 

characteristics. 

 
 

Table 4 and 5. Table 4 describe the results of 

our multivariable GEE models. After controlling for 

clustering and other relevant factors, Table 4 shows that 

average PM2.5 concentrations (2010) are significantly 

higher in densely populated districts with higher 

percentages of urban, SC, and children, and higher 

proportions of households living in poor condition and 

without toilets. The only variables that show a 

statistically negative relationship with PM2.5 

concentration are female population percentages and 

residences with an outdoor drinking water source. 

 

Table 4: shows the Generalized Estimating Equation 

(GEE) for estimating average PM2.5 levels in 2010 (N 

= 640). 

 
Note: The GEE algorithm is based on a gamma 

distribution with a log link function and an independent 

correlation matrix. 

 

Table 5: GEE for estimating the PM2.5 concentration 

ratio between 2016 and 2010 (N = 601). 

 
Note: GEE is based on a normal distribution with an 

unstructured correlation matrix and an identity link 

function. 

Table 5 shows that districts with larger 

percentages of SCs, females, children, and individuals 

with disabilities, and houses without toilets, had 

considerably higher PM2.5 concentration ratios 

2016/2010. Increases in PM2.5 pollution are also linked 

to lower percentages of urban and illiterate people, 

households with no assets, and those living in 

dilapidated housing. 

 

IV. DISCUSSION 
 

Our early statistical study highlighted a variety 

of international and national requirements for PM2.5 

pollution, and districts in India where these standards 

were surpassed (Table 2). More than 85 percent of 

India's population and households live in districts with 

higher outdoor PM2.5 concentrations in 2010 than 

suggested by international norms. These districts also 

host at least 85% of the people and families linked to 

each of our socially disadvantaged groups. With the 

exception of the ST population, districts whose PM2.5 

pollution exceeds India's national air quality limits 

comprise around 56 percent and 51 percent of the 

individuals in our socially disadvantaged population and 

household groups, respectively. The existence of ST 

communities in less industrialized areas of the 

northeastern and northern India, as found in prior 

studies, implies that they are also concentrated in areas 

with lower particulate air pollution. 

After controlling for spatial clustering, 

population density, and other contextual characteristics, 

we wanted to see if PM2.5 pollution and recent increases 

were considerably higher in districts with higher 

proportions of socially disadvantaged groups. Our 

multivariable GEE analysis found that urbanized 

districts with larger numbers of SCs, young children, 

houses in poor condition, and households without toilets 

had higher PM2.5 concentrations. In less urbanized 

districts with larger percentages of SCs, females, 

children, and individuals with disabilities, and 

households without toilets, we found considerably higher 

PM2.5 concentration increases. 

Our findings show that various disadvantaged 

and vulnerable population groups face significantly 

higher air pollution risk loads. SCs and young children 

(0–6 years) are disproportionately located in districts 

with higher exposure to PM2.5 pollution, and those with 

the greatest increases in PM2.5 pollution, according to 

both bivariate and multivariable statistical analyses. 

These findings highlight the critical importance of 

addressing and reducing PM2.5 emissions because SCs, 

as a socially marginalized group, frequently lack access 

to protective resources or cannot afford risk mitigation, 

and children are physically more vulnerable to the 

harmful effects of such emissions. The female 

percentage was lower in districts with higher PM2.5 

concentrations but higher in areas where PM2.5 levels 

increased. The negative relationship between PM2.5 
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pollution and the male population can be explained by 

PM2.5 increases in southern states and medium-sized 

cities with relatively higher female proportions, while 

the positive relationship can be explained by PM2.5 

increases in medium-sized cities with relatively higher 

female proportions. These findings could also point to a 

male-dominated urban migration pattern in India, with 

the most polluted locations also providing more job 

prospects for migrant men. The proportion of women 

exposed to PM2.5 pollution has increased as a secondary 

tier of urban settlements begins to demonstrate the 

effects of economic and industrial development. 

Unlike the SC population, STs are 

disproportionately underrepresented in the most polluted 

areas, according to our bivariate analysis, and our 

multivariable models indicate no significant association. 

Their lower proportions in IGP districts and other places 

with higher PM2.5 pollution and recent increases can 

explain this conclusion. It could also be due to a lack of 

commercial or industrial development in districts with 

larger ST proportions, which could lead to lower PM2.5 

levels in these locations. According to our multivariable 

analysis, the percentage of people with impairments is 

significantly greater in districts with the highest PM2.5 

increases, but not significantly associated with PM2.5 

exposure. This conclusion may represent a pattern 

similar to that of women, in which people with 

disabilities are not found in highly metropolitan regions 

because they may not be able to find industrial 

employment, but as air pollution rises in medium-sized 

cities, they, too, are exposed to greater levels of 

pollution. In our bivariate study, we discovered that the 

illiterate population was overrepresented in areas with 

the greatest PM2.5 concentrations and increases. 

However, after adjusting for other socioeconomic 

variables in our multivariable models, the illiteracy rate 

showed a non-significant link with PM2.5 exposure and a 

significantly negative relationship with PM2.5 rise. The 

latter could be linked to considerable rises in PM2.5 

levels in certain southern Indian districts with higher 

literacy rates. 

Inequalities in the distribution and rise of PM2.5 

pollution are also revealed by our data, which is linked 

to housing quality. Both bivariate and multivariable 

analyses show that districts with a higher percentage of 

households without toilets had considerably higher PM2.5 

exposure and increases. This could be partly explained 

by their relatively larger numbers in the IGP and central 

India states. In bivariate and multivariable studies of 

PM2.5 exposure, similar positive relationships were 

found for the percentage of households living in poor 

conditions. On the other hand, the negative coefficient 

for this variable in the multivariable model for PM2.5 rise 

could be linked to lower proportions of households in 

poor condition houses in districts in south India that have 

recently experienced PM2.5 increases. In our multi-

variable study, the percentage of households without 

assets was not substantially connected to PM2.5 levels 

and was adversely related to PM2.5 rises. This is not 

surprising given the lower proportions of this category in 

the IGP and southern India, where PM2.5 exposure and 

growth were significantly higher. The statistical results 

for the fraction of homes having drinking water outside 

their premises, which was found to be adversely and 

non-significantly related to PM2.5 concentration and rise, 

were influenced by similar location patterns. Overall, 

these data indicate that, while asset ownership and 

access to drinking water have increased in urban India, 

housing building quality and access to toilets remain 

issues, particularly in areas with higher levels of air 

pollution and recent increases. 

 

V. CONCLUSION 
 

At the district level in India, our distributive EJ 

analysis uncovers geographically and socially diverse 

patterns of ambient PM2.5 pollution exposure, and recent 

increases in PM2.5 pollution. Even after controlling for 

clustering and contextual characteristics, districts with 

larger percentages of SCs, children, and houses without 

toilets have significantly higher levels of surface PM2.5 

and recent PM2.5 increases. Aside from these three 

indicators of social disadvantage or vulnerability, 

districts with higher PM2.5 pollution have a significantly 

higher proportion of households in poor condition 

residences and a significantly higher proportion of 

people with disabilities. While PM2.5 exposure is much 

higher in more urbanized districts, primarily in the IGP 

region, it has recently increased in less urbanized areas, 

primarily in southern and central India. These disparities 

in spatial patterns could indicate an increase in air 

pollution in medium and small Indian cities, which could 

be caused by migration and regional population shifts, 

and industry migrating to less urbanized areas to take 

advantage of lower pollution levels. This pattern of 

increase also shows that, in addition to SCs and children, 

women and people with disabilities are increasingly 

exposed to air pollution, broadening the profile of 

vulnerable populations in India. While our research is a 

good start, further research and data are needed to 

understand how factors like population growth, rural-

urban migration trends, and changing economic and 

industrial development patterns have led to increases in 

PM2.5 pollution and their disproportionate societal 

repercussions. 

As air pollution becomes a more visible issue in 

urban India, citizen pressure is projected to push 

government and business interests to priorities laws and 

practices that protect environmental quality. These could 

include more stringent pollution regulation by the 

Central and State Pollution Control Boards, a shift to 

less polluting modes of transportation, and increased 

investment in "green" technologies, renewable energy, 

and industrial effluent treatment. However, there may be 

a propensity to create "pollution havens," worsening 

pollution exposure for socially disadvantaged sections 



 

 41 This work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

 

ISSN: 2349-8889  

Volume-7, Issue-1 (January 2020) 

 

 

 

International Journal for Research in 

Applied Sciences and Biotechnology 

www.ijrasb.com 

while allowing more advantaged parts to relocate to less 

polluted enclaves. In addition, India's unwavering focus 

on economic growth has led to the relaxation of 

environmental regulations in an effort to attract foreign 

investment. As a result, there is a larger global 

framework in which the economic incentive to pollute is 

strong enough for firms and governments to ignore the 

social costs. Local activists' and national environmental 

organizations’ work becomes much more difficult in this 

context, especially when the wealthy and middle classes 

have the ability to relocate away from polluted areas. 

There is still a lot of work to be done to match EJ's goals 

with profit pressures. 

This study has shown the link between rising 

particulate air pollution and rising environmental 

inequalities in India, underlining the necessity to 

investigate the social repercussions of poor 

environmental quality further. Future research should 

look into how other types of pollution, such as water and 

soil pollution, reveal comparable inequalities. 

Furthermore, the ways in which different types of 

pollution interact with one another and with 

socioeconomic disadvantages should be investigated 

further. While the severity of particulate pollution 

signals the urgent need to limit polluting activities, it 

should also be seen as the leading edge of a bigger goal 

to address India's environmental injustices through 

enhancing environmental quality. 
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