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ABSTRACT 
In this work, we discuss a hybrid-based method 

on differential transforms and a finite difference method to 

numerical solution of convection–diffusion equation with 

Dirichlet’s type boundary conditions. The developed 

method is tested on various problems and the numerical 

results are reported in tabular and figure form. This 

method can be easily extended to handle non-linear 

convection–diffusion partial differential equations. 
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I. INTRODUCTION 
 

The term convection means the movement of 

molecules within fluids, whereas, diffusion describes the 

spread of particles through random motion from regions 

of higher concentration to regions of lower concentration 

[1, 2, 3]. Convection-diffusion equations model a variety 

of physical phenomena [4, 5]. The numerical solution of 

convection-diffusion transport problems arises in many 

important applications in science and engineering. 

Characteristic examples are the heat transfer through a 

permeable medium, the transport of a pollutant through 

the atmosphere or the transport of a fluid through the 

porous medium [6, 7, 8]. 

In this paper, the numerical solution of the 

convection-diffusion equation is examined using a 

hybrid differential transforms approach and a finite 

difference method, as proposed by Chu and Chen [9]. 

We have an equation with free variables and in terms of 

the free variable, we begin with the hydride differential 

transforms technique. Then, in terms of obtaining a 

numerical scheme to obtain the coefficients associated to 

the differential transform’s method [10], we utilize the 

finite difference approach to estimate the function at 

specified node points. We avoid the computational 

complexity of the two-variable differential transform 

method by employing this method instead of the two-

variable differential transform method [11]. We will also 

benefit from the differential transform method's 

computational accuracy [12]. Consider the equation for 

convection-diffusion [13] 

  
𝑢𝑡(𝑥, 𝑡) + 𝜀𝑢𝑥(𝑥, 𝑡) = 𝛾𝑢𝑥𝑥(𝑥, 𝑡), 0 < 𝑥 < 1 , 𝑡 > 0     (1) 

The initial condition is 

 

𝑢(𝑥, 0) = 𝜑(𝑥),     0 < 𝑥 < 1                                           (2) 
 

The following are the boundary conditions: 

 

𝑢(0, 𝑡) = 𝑔0(𝑡),    𝑡 ≥ 0                                               (3) 
 

𝑢(1, 𝑡) = 𝑔1(𝑡),   𝑡 ≥ 0                                                (4) 
 

Where the parameters 𝜀, 𝛾 > 0 are the viscosity 

coefficient and phase speed respectively and subscripts 𝑡 
and 𝑡  denote differentiation. And 𝑔_0, 𝑔_1 and 𝜑  are 

known functions with sufficient smoothness.  

 

II. METHOD OF HYBRID 

DIFFERENTIAL TRANSFORM 
 

We can approximate 𝑢(𝑥, 𝑡)  for the free 

variable 𝑡  using the hybrid differential transform as 

follows 

 

𝑢(𝑥, 𝑡) ≈ ∑𝑌𝜔,𝑘𝑡
𝑘                                                  (5)

𝑘

𝑘=0

 

 

Consequently, we have 

 

𝑢𝑡(𝑥, 𝑡) ≈ ∑(𝑘 + 1)𝑌𝜔,𝑘+1𝑡
𝑘

𝑘

𝑘=0

                            (6) 

 

In addition, we can deduce from equation (2) 

that: 

 

𝑢𝑥(𝑥, 𝑡) ≈ ∑
𝑑𝑌𝜔,𝑘
𝑑𝑥

𝑘

𝑘=0

𝑡𝑘                                         (7) 

 

𝑢𝑥𝑥(𝑥, 𝑡) ≈ ∑
𝑑2𝑌𝜔,𝑘
𝑑𝑥2

𝑘

𝑘=0

𝑡𝑘                                    (8) 

 

As a result of the differential translation of 

equation (4) with respect to the intendant variable 𝑡, we 

get 
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(𝑘 + 1)𝑌𝑥,𝑘+1 + 𝜀
𝑑𝑌𝑥,𝑘
𝑑𝑥

= 𝛾
𝑑2𝑌𝑥,𝑘
𝑑𝑥2

,   𝑘

= 0,1, … , 𝐾 − 1                               (9) 
 

Using the finite difference approach to 

discretize equation (9) we divide the interval [0, 1] by 

the step size ℎ  as 𝑥_𝑖 = 𝑖ℎ  , 𝑖 = 0,1, … , 𝑁 and 𝑁 =
1/ℎ   as follows 

 

(𝑘 + 1)𝑌𝑥𝑖,𝑘+1 + 𝜀
𝑌𝑥𝑖+1,𝑘 − 𝑌𝑥𝑖−1,𝑘

2ℎ
= 

𝛾
𝑌𝑥𝑖+1,𝑘 − 2𝑌𝑥𝑖,𝑘 + 𝑌𝑥𝑖−1,𝑘

ℎ2
 , 𝑘 = 0,1, … , 𝐾 − 1, 𝑖

= 1,2, … , 𝑁 − 1                            (10) 
 

We have simplified 𝑌_(𝑥_𝑖, 𝑘) = 𝑌_(𝑖(𝑘))  by 

introducing the symbolization 𝑌_(𝑥_𝑖, 𝑘) = 𝑌_(𝑖(𝑘)). 
 

𝑌𝑘+1
𝑖 =

1

𝑘 + 1
(
𝛾

ℎ2
𝑌𝑘
𝑖+1 − 2𝑌𝑘

𝑖 + 𝑌𝑘
𝑖−1 −

𝜀

2ℎ
𝑌𝑘
𝑖+1

− 𝑌𝑘
𝑖−1),   

 𝑘 = 0,1, … , 𝐾 − 1, 𝑖 = 1,2, … , 𝑁 − 1                   (11)  
 

To use scheme (11), we require the values 

𝑌_𝑘^0  and 𝑌_𝑘^𝑁  for 𝑘 = 0,1, . . . , 𝐾  and 𝑌_0^𝑖  for𝑖 =
0,1, … , 𝑁. To find the values of 𝑌_0^𝑖  , we put 𝑡 = 0 in 

equation (5), therefore we have according to the initial 

condition (2). 
 

𝜑(𝑥𝑖) = ∑𝑌𝑘
𝑖

𝐾

𝑘=0

 

 

Consequently, 

 

𝑌0
𝑖 = 𝜑(𝑥𝑖),   𝑖 = 0,1, … , 𝑁                                   (12) 

 

We used 𝑥 = 0  in equation (5) to find the 

values of 𝑌_𝑘^0, so according to the boundary condition 

(3), we have 
 

𝑔0(𝑡) = ∑𝑌𝑘
0𝑡𝑘

𝐾

𝑘=0

                                                (13) 

 

Using equation (13), create a system of linear 

equations by determining various values for \, such as  

𝑡 = 0,1, … , 𝐾. 
 

𝐴𝑌0 = 𝑏0                                                             (14) 
 

We reach to the point where. 
 

𝐴 =

(

 
 

1 0 0 … 0
1 1 1 … 1
1 2 22 … 2𝑘

⋮ ⋮ ⋮
1 𝐾 𝐾2 … 𝐾𝑘)

 
 

,𝑌0 =

(

 
 

𝑌0(1)

𝑌0(2)

𝑌0(3)
⋮

𝑌0(𝐾))

 
 

,𝑏0 =

(

 
 

𝑔0(1)

𝑔0(2)

𝑔0(3)
⋮

𝑔0(𝐾))

 
 

 

The values 𝑌_𝑘^0  for 𝑘 = 0,1, … , 𝐾  are 

obtained from the solution of system (14). In the same 

way, the boundary condition yields the following system 

of linear equations (4). 

 

𝐴𝑌𝑁 = 𝑏1                                                             (15) 
 

Where, 

  

𝑌𝑁 =

(

 
 

𝑌𝑁(1)

𝑌𝑁(2)

𝑌𝑁(3)
⋮

𝑌𝑁(𝐾))

 
 
,                     𝑏1 =

(

 
 

𝑔1(1)

𝑔1(2)

𝑔1(3)
⋮

𝑔1(𝐾))

 
 

. 

 

The values of 𝑌_𝑘^𝑁 for 𝑘 = 0,1, … , 𝐾 will be 

obtained from the solution of system (15). 

As a result, of 𝑌_𝑘^𝑖 for 𝑘 = 0,1, … , 𝐾 and 𝑖 =
0,1, … , 𝑁 can be calculated using equation (11), as well 

as equations (12), (14) and (15). 

Now we let 𝑇  be the last time. Divide the 

interval [0, 𝑇] by the step size 𝜏 as 𝑡_𝑗 = 𝑗𝜏, where 𝑗 =
0,1, … ,𝑀 and 𝑀 = 𝑇/𝜏 .Let  𝑢(𝑥_𝑖, 𝑡_𝑗) ≈ 𝑈_𝑖^𝑗 be the 

approximate solution value. After calculating 𝑌_𝑘^𝑖 and 

using equation (5), we get. 

 

𝑈𝑖
𝑗
=∑𝑌𝑘

𝑖𝑡𝑗
𝑘

𝐾

𝑘=0

                                              (16) 

 

III. NUMERICAL EXPERIMENTS 
 

Example 1: In equation (1), we assume 𝜀 = 0_ ∙  1 and 

𝛾 = 00_ ∙  1 ; in this case, we have 𝜑(𝑥) =
𝑒^𝛼𝑥, 𝑔_0 (𝑡) = 𝑒^𝛽𝑡, and𝑔_1 (𝑡) = 𝑒^(𝛼 + 𝛽𝑡, where 

𝛼 = 1_ ∙  17712434446770 , 𝛽 = −0_ ∙  09,    and the 

exact solution of the equation is 𝑢(𝑥, 𝑡) = 𝑒^(𝛼 + 𝛽𝑡) . 
In Table 1, the values of the exact solution, the 

approximate solution, and the absolute error at the final 

time 𝑇 = 0,5 are given for different 𝑥_𝑖 , assuming ℎ =
0.1 , 𝜏 = 0.01, 𝑘 = 20 , and 𝑇 = 0,5. Figures 1 and 2 

show the exact and approximate solution diagrams at all 

points of the node. 

Example 2: In this example let 𝜀 = 3.5 , 𝛾 = 0.022, 𝛼 =
0.028547, 𝛽 = −0.0999, 𝜏 = 0.01, 𝐾 = 20, 𝑎𝑛𝑑 𝑇 =
0.5. The values of the exact solution, the approximate 

solution, and the absolute error at the final time  𝑡 = 0.5 

are given in Table 2 for various 𝑥_𝑖 . Figures 3 and 4 

show the exact and approximate solution diagrams at all 

points of the node. 

Example 3: In equation (1-4), we let 𝜀 = 0.8 and 𝛾 =
0.1  be positive numbers. The exact solution of the 

equation will be given in this case. 

 

𝑢(𝑥, 𝑡) = √
20

20 + 𝑡
 𝑒  

−
(𝑥−2+𝜀𝑡)2

4𝛾(𝑡+20)  
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In addition, the initial and boundary conditions 

are obtained using the exact solution. We also make the 

assumption. 

 

ℎ = 0.1, 𝜏 = 0.01, 𝐾 = 10, and 𝑇 = 0.1  

For different 𝑥_𝑖  , the values of exact solution, 

approximate solution, and absolute error at the final time 

𝑡 = 0.01  are given in Table 3, and the exact and 

approximate solution diagrams at all node points are 

shown in Figures 5 and 6, respectively. 

 

Table 1: The absolute error, the relative error and the exact and approximate solution for Example 1 at time 𝒕 =
𝟎. 𝟓. 

Relative error Absolute error Hybrid method Exact solution
 

𝑥 

7.9911𝑒 − 05 8.59385𝑒 − 05
 

1.075335
 

1.075421 0.1 

1.0909𝑒 − 04 1.31971𝑒 − 04
 

1.209632
 

1.209763 0.2 

1.1753𝑒 − 04 1.59944𝑒 − 04
 

1.360728
 

1.360888 0.3 

1.1952𝑒 − 04 1.82977𝑒 − 04
 

1.530708
 

1.530891 0.4 

1.1990𝑒 − 04 2.06486𝑒 − 04
 

1.721924
 

1.722130 0.5 

1.1983𝑒 − 04 2.32144𝑒 − 04
 

1.937028
 

1.937260 0.6 

1.1892𝑒 − 04 2.59152𝑒 − 04
 

2.179004
 

2.179264 0.7 

1.1371𝑒 − 04 2.78759𝑒 − 04
 

2.451220
 

2.451499 0.8 

8.9562𝑒 − 05 2.46989𝑒 − 04
 

2.757494
 

2.757741 0.9 

 

 
Figures 1: The exact solution diagram for Example 1. 

 

Figures 2: The numerical solution diagram for 

Example 1. 

 

Table 2: The absolute error, the relative error and the exact and approximate solution for Example 2 at time 𝒕 =
𝟎. 𝟓. 

Relative error Absolute error Hybrid method Exact solution
 𝑥 

5.1680e-06 06-4.93028e
 

0.9540015
 

0.9539966 0.1 

1.2434e-04 04-1.18955e
 

0.9566050
 

0.95677239 0.2 

1.0366e-05 06-9.94557e
 

0.9594491
 

0.9594591 0.3 

2.2353e-04 04-2.15085e
 

0.9424171
 

0.9622021 0.4 

1.3892e-06 06-1.34050e
 

0.9649515
 

0.9649529 0.5 

2.3246e-04 04-2.24950e
 

0.9674866
 

0.9677116 0.6 

1.9452e-05 05-1.887800
 

0.9704970
 

0.9704781 0.7 

1.4956e-04 04-1.45559e
 

0.9733982
 

0.97322526 0.8 

1.5002e-05 05-1.46422e
 

0.9760204
 

0.9706350 0.9 
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Figures 3: The exact solution diagram for Example 2. 

 

 
Figures 4: The numerical solution diagram for 

Example 2. 

 

Table 3: The absolute error, the relative error and the exact and approximate solution for Example 3 at time 𝒕 =
𝟎. 𝟓. 

Relative error Absolute error Hybrid method Exact solution
 x 

2.7678𝑒 − 05 1.69545𝑒 − 05
 

0.6125786
 

0.6125616 0.1 

3.0779𝑒 − 05 1.98710𝑒 − 05
 

0.6427079
 

0.6426881 0.2 

3.1552𝑒 − 05 2.12228𝑒 − 05
 

0.6726421
 

0.6726209 0.3 

3.1395𝑒 − 05 2.20454𝑒 − 05
 

0.7022210
 

0.7021989 0.4 

3.0803𝑒 − 05 2.25249𝑒 − 05
 

0.7312788
 

0.7312563 0.5 

2.9958𝑒 − 05 2.27565𝑒 − 05
 

0.7596469
 

0.7596241 0.6 

2.8716𝑒 − 05 2.26034𝑒 − 05
 

0.7871545
 

0.7871319 0.7 

2.6012𝑒 − 05 2.11635𝑒 − 05
 

0.8136306
 

0.8136094 0.8 

1.5129𝑒 − 05 1.269140 − 05
 

0.839009
 

0.8388882 0.9 

 

 
Figures 5: The exact solution diagram for Example 3. 

 

 
Figures 6: The numerical solution diagram for 

Example 3. 
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IV. CONCLUSION 
 

In this work the hybrid differential and finite 

difference method is used to numerical solution of 

convection-diffusion equations. Three numerical 

examples are illustrated in tables and figures. The hybrid 

method provides an iterative procedure to calculate the 

numerical solutions; therefore, it is not necessary to 

carry out complicated symbolic computation. Moreover, 

the hybrid method provides an iterative procedure to 

calculate the numerical solutions without using 

linearization. Comparisons of the results with exact 

solutions showed that the present method is capable of 

solving the given equations very well. 
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