A Complete Analysis of Physiochemical Properties, Microbial Diversity of Soil Along with Economically Important Plant Found in a Tropical Dry Deciduous Forest Debdarha, Bargarh, Odisha

Aishwarya Khamari¹, Ratikanta Rath², Akshya Kumar Mishra³ and Samir K. Bhoi⁴ ¹School of Life Sciences, Sambalpur University, Sambalpur, Odisha, INDIA ²Government Women's College, Sambalpur, Odisha, INDIA ³Mahamaya Degree College, Nuapada, Odisha, INDIA ⁴Viswa Seva Govt. High School, Kulundi, Odisha, INDIA

¹Corresponding Author: khamariaishwarya@gmail.com

ABSTRACT

Devdarha is a tropical dry deciduous forest situated in Padampur subdivision of Bargarh district Odisha India. It is present near to Odisha Chhattisgarh border having Latitude 21.12035°N and longitude 83.04503°E. The forest is bisected by the Ong River. In this investigation there was an attempt had been made to analyze the physicochemical property of soil, Bacterial diversity of forest soil and Dominant economically important plant species found in Devdarha. In this investigation, it was found that soil was slightly acidic soil having a pH 6.8. High water holding capacity, moisture content, organic carbon content, NPK content indicate that it was fertile soil and luxuriant for plant growth. There were four different species of bacteria found among them Rhizobium spp. important for nitrogen fixation. Here we had found 32 economically important plant species belonging to 17 families. This type of investigation gives us an idea about the interaction of biotic and abiotic components of a typical forest ecosystem.

Keywords- Devdarha, dry deciduous forest, soil parameters, soil bacteria, phytodiversity

I. INTRODUCTION

Devdarha is a tropical dry deciduous forest situated in Padampur subdivision of Bargarh district Odisha India. It is present near to Odisha Chhattisgarh border having Latitude 21.12035°N and longitude 83.04503°E. The forest is bisected by the Ong River.

In this investigation, there was an attempt had been made to analyze the physicochemical property of soil, the Bacterial diversity of forest soil and the Dominant economically important plant species found in Devdarha. Khamari et.al. (2021) analyzed the biodiversity of tree species in a tropical dry deciduous forest and found 36 different types of plant species.

II. MATERIAL AND METHODS

Soil sampling

The soil samples were collected during the month June 2019 from the forest sites randomly and packed into sterile polythene bags. The stones were removed from the collected soil samples and then sieved. The sieved samples each (500g) were taken for nutrient analysis.

Determination of physicochemical properties of soil

Soil texture was determined by the Bouyouncos hydrometer method (Bouyouncos, 1962) and bulk density (Klute, 1988) by the soil core method. Water holding capacity was determined according to Keen's box method given in Piper (Piper, 1944), while soil moisture was determined by using a soil moisture meter. Soil pH and electrical conductivity were determined in a soil-water suspension using a digital pH meter and E.C meter respectively. Soil organic carbon was determined by dichromate oxidation and titration with ferrous ammonium sulphate (Walkley and Black, 1934) and total organic carbon by dry combustion method.

Nitrogen was estimated Kjeldahl method. Available and Exchangeable sodium and potassium were determined using a flame photometer (Jackson, 1958). Calcium and Magnesium were determined by EDTA titration. Soil nitrate and sulphate content were determined using colorimetric method.

Isolation of Bacteria

The soil bacteria were isolated by serial dilution technique on Potato Dextrose Agar (PDA). One gram of soil from the sample was suspended in 10 ml of sterile distilled water and mixed well. The suspension was serially diluted from 10-1 to 10-8. Spread plate technique was carried out to isolate the organism from

www.ijrasb.com

the diluted sample. 0.1 ml was pipette out onto plates with PDA and spread with a glass rod and incubated at 37°C for 24 hours in a BOD incubator. The colonies were isolated and maintained for further studies. Isolated unidentified bacteria assign with strain code (FAAB) and number.

Identification and Characterization of Bacteria

Isolated bacteria were identified based on shape, size, gram staining, various biochemical tests reflected in table no 3 Collins and Lyne (1989).

Identification of Dominant plants

In the course of the investigation, dominant plants were identified using relevant flora books (Haines, 1921-1925 and Saxena & Brahmam 1994-1996). The herbarium was prepared and preserved as per Jain & Rao (1977) for future reference.

III. RESULTS

Soil parameter reflected in table no-1, Soil nutrient given in table no-2, Soil bacteria given in table-3 and plant species given in table 4.

https://doi.org/10.31033/ijrasb.8.5.26

Parameters	Value			
Sand (%)	49.03±1.14			
Slit (%)	12.06±1.4			
Clay (%)	41.02±1.06			
Bulk density (gm/cm ⁻³)	1.86±0.02			
Water Holding capacity (%)	68.01±1.39			
Moisture content (%)	24.61±1.02			

Table 2: Soil pH and Nutrient analysis

Sl.No.	Parameter	Value
1.	pH	6.7±1.01
2.	EC(µS/cm.)	164.3±2.4
3.	Total Nitrogen(g/kg.)	45.06±1.7
4.	Phosphorous(µg/gm.)	0.39±0.04
5.	Potassium(g/kg.)	5.32±0.89
6.	Sodium(g/kg.)	0.32±0.01
7.	Nitrate(g/kg.)	0.23±0.02
8.	Sulphur(mg./kg.)	0.39±0.05
9.	Calcium(g/kg.)	0.17±0.01
10.	Magnecium(g/kg.)	0.39±0.06

Table 3: Morphology and biochemical TEST of bacterial isolates

NO	ISOLATE	MORPHOLOGY	Gram stain	Catalase test	MR test	VP test	Indole	Citrate	IDENTIFIED BACTERIA
1	FAAB01	Bacilli	-	+	-	+	-	+	Klebsiella Spp.
2	FAAB02	Cocci	+	+	-	-	-	-	Streptococcus Spp.
3	FAAB03	Rod	-	+	-	-	-	-	Rhizobium Spp.
4	FAAB04	Cocci	+	+	+	-	-	+	Micrococcus Spp.

Table 4: Plant Species

Sl. No.	Scientific Name of the Species	Family	Local Name
1	Acacia catechu (L.f.) Willd.	Leguminosae	Khair
2	Azadirachta indica A. Juss.	<u>Meliaceae</u>	Neem
3	Boswellia serrata Roxb. exColebr.	Burseraceae	Siali/sale
4	<u>Bridelia retusa (L.) A.Juss.</u>	Phyllanthaceae	Khais
5	Buchanania lanzan Spreng.	Anacardiaceae	Char
6	Butea monosperma (Lam.) Taub.	Leguminosae	Palsa
7	Caesalpinia pulcherrima (L.) Sw.	Leguminosae	Radha Chuda
8	<u>Careya arborea Roxb.</u>	Lecythidaceae	Kumbhi
9	Casearia tomentosa Roxb.	Salicaceae	
10	<u>Cassia fistula L.</u>	Leguminosae	Sunari
11	Chloroxylon swietenia DC.	Rutaceae	Veru
12	Cleistanthus collinus (Roxb.) Benth. exHook.f.	Phyllanthaceae	karla
13	<u>Dalbergia sissoo DC.</u>	<u>Myrtaceae</u>	Sisu
14	Diospyros melanoxylon Roxb.	Ebenaceae	Kendu
15	Eucalyptus citriodora Hook.	Myrtaceae	Euclipatas
16	Gardenia latifolia Aiton	Rubiaceae	Dum kurdu
17	<u>Gmelina arborea Roxb.</u>	Lamiaceae	Gambhri
18	Haldina cordifolia (Roxb.) Ridsdale	Rubiaceae	karma
19	<u>Helicteres isora L.</u>	Malvaceae	kanmurli

181

This work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

International Journal for Research in Applied Sciences and Biotechnology

www.ijrasb.com

https://doi.org/10.31033/ijrasb.8.5.26

20	<u>Ixora parviflora Lam.</u>	Rubiaceae	Tel kuruan
21	Madhuca indica J.F.Gmel.	Sapotaceae	Mahul
22	Morinda tinctoria Roxb.	Rubiaceae	Achu
23	<u>Nyctanthes arbor-tristis L.</u>	Oleaceae	Gangsiuli
24	Pongamia pinnata (L.) Pierre	<u>Leguminosae</u>	Karanj
25	Shorea robusta Gaertn.	Dipterocarpaceae	Sal
26	Syzygium cumini (L.) Skeels	Myrtaceae	Jam
27	Tectona grandis L.	Verbenaceae	Saguan/Teak
28	Terminalia bellirica (Gaertn.) Roxb.	Combretaceae	Bahada
29	<u>Terminalia chebula Retz.</u>	Combretaceae	Harda
30	Terminalia tomentosa Wight &Arn.	Combretaceae	sahaj
31	Woodfordia fruticosa (L.) Kurz	Lythraceae	Dhatuki
32	Ziziphus xylopyrus (Retz.) Willd.	Rhamnaceae	Buro

IV. CONCLUSION

In this investigation, it was found that soil was slightly acidic soil having a pH 6.8. High water holding capacity, moisture content, organic carbon content, NPK content indicate that it was fertile soil and luxuriant for plant growth. There were four different species of bacteria found among them *Rhizobium spp.* important for nitrogen fixation. Here we had found 32 economically important plant species belonging to 17 families. These types of investigation give us an idea about the interaction of biotic and abiotic component of a typical forest ecosystem.

REFERENCES

[1] Bhatt, M. R. (2019). *Systematic studies on Orchidaceae of Gujarat* (Doctoral dissertation, Maharaja Sayajirao University of Baroda (India)).

[2] Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. *Agronomy journal*, *54*(5), 464-465.

[3] Collins CH, Lyne PM, Grange GM (1989); Microbiological methods 6th Edn. Butterworth, London.

[4] Jackson, M. L. (1958). Soil chemical analysis prentice Hall. *Inc., Englewood Cliffs, NJ, 498, 183-204.*

[5] Jain SK. & Rao RR (1977); A Hand Book on Field & Herbarium Methods, Todays & Tomorrows Publisher, New Delhi.

[6] Khamari, A., Mansingh, A., & Pradhan, A. Assessment of biodiversity and biomass carbon stock from an urban forest: A case study of Sambalpur university campus forest.

[7] Klute, A. (1988). Methods of Soil Analysis 2d ed., pt. 1; Physical and Mineralogical Methods. *Soil Science*, *146*(2), 138.

[8] Piper C.S. (1944). Soil and Plant Analysis, John Wiley and Sons, New York, USA.

[9] Saxena, H. O., & Brahmam, M. (1994). The flora of Orissa, vol. I-IV. Orissa Forest Development Corporation Ltd. Odisha, India. [10] Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. *Soil science*, *37*(1), 29-38.